【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度得到函數(shù)的圖象,有下列叫個結(jié)論

單調(diào)遞增; 為奇函數(shù);

的圖象關(guān)于直線對稱; 的值域為.

其中正確的結(jié)論是( )

A. B. C. D.

【答案】A

【解析】

由兩角和的正弦公式和周期公式可得f(x)的解析式,由圖象平移可得g(x)的解析式,由正弦函數(shù)的單調(diào)性可判斷p1;由奇偶性的定義可判斷p2;由正弦函數(shù)的對稱性可判斷p3;由正弦函數(shù)的值域可判斷p4

函數(shù)的最小正周期為π,可得f(x)=2sin(ωx+)的周期為T= 即ω=2,即有f(x)=2sin(2x+)將f(x)的圖象向右平移個單位長度得到函數(shù)g(x)的圖象,可得g(x)=2sin(2x-+)=2sin(2x-)由x∈ 可得2x- 可得g(x)在 單調(diào)遞增,故p1正確;g(x)的圖象不關(guān)于原點對稱,不為奇函數(shù),故p2錯誤;由g(=2sin=-2,為最小值,y=g(x)的圖象關(guān)于直線x=對稱,故p3正確;由x∈ 可得2x-即有的值域為故p4錯誤.
故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 據(jù)觀測統(tǒng)計,某濕地公園某種珍稀鳥類的現(xiàn)有個數(shù)約只,并以平均每年的速度增加.

(1)求兩年后這種珍稀鳥類的大約個數(shù);

(2)寫出(珍稀鳥類的個數(shù))關(guān)于(經(jīng)過的年數(shù))的函數(shù)關(guān)系式;

(3)約經(jīng)過多少年以后,這種鳥類的個數(shù)達(dá)到現(xiàn)有個數(shù)的倍或以上?(結(jié)果為整數(shù))(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)已知為函數(shù)的公共點,且函數(shù)在點處的切線相同,求的值;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某日A,B,C三個城市18個銷售點的小麥價格如下表:

銷售點序號

所屬城市

小麥價格(元/噸)

銷售點序號

所屬城市

小麥價格(元/噸)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(1)甲以B市5個銷售點小麥價格的中位數(shù)作為購買價格,乙從C市4個銷售點中隨機挑選2個了解小麥價格.記乙挑選的2個銷售點中小麥價格比甲的購買價格高的個數(shù)為,求的分布列及數(shù)學(xué)期望;

(2)如果一個城市的銷售點小麥價格方差越大,則稱其價格差異性越大.請你對A,B,C三個城市按照小麥價格差異性從大到小進行排序(只寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的極小值;

(Ⅱ)當(dāng)時,討論的單調(diào)性;

(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)滿足,且當(dāng)時,,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)要從高一年級甲、乙兩個班級中選擇一個班參加市電視臺組織的“環(huán)保知識競賽”.該校對甲、乙兩班的參賽選手(每班7人)進行了一次環(huán)境知識測試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85分,乙班學(xué)生成績的中位數(shù)是85.

(1)求的值;

(2)根據(jù)莖葉圖,求甲、乙兩班同學(xué)成績的方差的大小,并從統(tǒng)計學(xué)角度分析,該校應(yīng)選擇甲班還是乙班參賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時,求曲線在點處的切線方程;

)求的單調(diào)區(qū)間;

)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某通信公司為了配合客戶的不同需要,現(xiàn)設(shè)計A,B兩種優(yōu)惠方案,這兩種方案的應(yīng)付話費y(元)與通話時間x(分鐘)之間的關(guān)系如圖所示(實線部分)(注:圖中MNCD)

1)若通話時間為2小時,則按方案A,B各付話費多少元?

2)方案B500分鐘以后,每分鐘收費多少元?

3)通話時間在什么范圍內(nèi),方案B才會比方案A優(yōu)惠?

查看答案和解析>>

同步練習(xí)冊答案