已知函數(shù)
在
上單調(diào)遞減,則
的取值范圍是
試題分析:因為,
在
上單調(diào)遞減,
所以,
0在(1,2)成立,
即,
在(1,2)成立,而
在(1,2)是增函數(shù),所以其最大值為
,故
。
點評:中檔題,求解本題的關鍵是利用函數(shù)的單調(diào)遞減區(qū)間,得出參數(shù)所滿足的不等式。轉(zhuǎn)化成不等式恒成立問題,通過研究函數(shù)的最值,使問題得解。根據(jù)題設轉(zhuǎn)化出不等式是本題的易錯點。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的定義域為
.
(I)求函數(shù)
在
上的最小值;
(Ⅱ)對
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
的圖象是連續(xù)不斷的曲線,且有如下的對應值表
| 1
| 2
| 3
| 4
| 5
| 6
|
| 124.4
| 35
| -74
| 14.5
| -56.7
| -123.6
|
則函數(shù)
在區(qū)間[1,6]上的零點至少有( )
A、2個 B、3個 C、4個 D、5個
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
的導函數(shù)的部分圖象為( )
A B C D
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
的導函數(shù)
則函數(shù)
的單調(diào)遞減區(qū)間是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
定義在R上的可導函數(shù)f(x),且f(x)圖像連續(xù),當x≠0時,
,則函數(shù)
的零點的個數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=lnx-
.
(1)當
時,判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)求
的極值;
(2)當
時,求
的值域;
(3)設
,函數(shù)
,若對于任意
,總存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
有極大值和極小值,則
的取值范圍是__
.
查看答案和解析>>