17.過圓C:(x-4)2+(y+1)2=25上的點M(0,2)作其切線l,且與直線l′:4x-ay+2=0平行,則l′與l間的距離是( 。
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{28}{5}$D.$\frac{12}{5}$

分析 求出直線l與l′的方程,即可求出l與l′之間的距離.

解答 解:由題意,kCM=$\frac{2+1}{0-4}$=-$\frac{3}{4}$,
∴kl=$\frac{4}{3}$,∴直線l的方程為4x-3y+6=0
∵l與l′:4x-ay+2=0平行,∴a=3,
∴l(xiāng)與l′之間的距離是$\frac{6-2}{\sqrt{16+9}}$=$\frac{4}{5}$,
故選:B.

點評 本題考查直線與圓的位置關(guān)系,考查l與l′之間的距離,求出直線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=2xtanx在點x=$\frac{π}{4}$處的切線方程是(2+π)x-y-$\frac{{π}^{2}}{4}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則AD1與平面BB1D1所成角的正弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某商場計劃在今年同時出售智能手機和變頻空調(diào),兩種市場銷售情況很好(有多少就能賣多少)的新產(chǎn)品,
一次該商場要根據(jù)實際情況(如資金、勞動力(工資)等)準備好月資金工藝量,以使每月的總利潤達到最大,通過一個月的市場調(diào)查,得到銷售這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:
資金產(chǎn)品所需資金(百元/臺)月資金供應(yīng)量(百元)
手機空調(diào)
成本4030600
勞動力(工資)2558
利潤1110
怎樣確定這兩種產(chǎn)品的月供應(yīng)量,才能使每月的總利潤最大,總利潤的最大值是多少百元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+y2-4x+6y=0和圓x2+y2-6x=0交于A,B兩點,則直線AB的方程是( 。
A.x+3y=0B.3x-y=0C.3x-y-9=0D.3x+y+9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)當a=1時,求(∁RB)∪A;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.把89化成二進制數(shù)使( 。
A.100100B.10010C.10100D.1011001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知角α是第四象限角,角α的終邊經(jīng)過點P(4,y),且sinα=$\frac{y}{5}$,則tanα的值是(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線C:y2=12x,過點P(2,0)且斜率為1的直線l與拋物線C相交于A、B兩點,則線段AB的中點到拋物線C的準線的距離為( 。
A.22B.14C.11D.8

查看答案和解析>>

同步練習(xí)冊答案