我們把形如數(shù)學(xué)公式的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對法數(shù):在函數(shù)解析式兩邊求對數(shù)得數(shù)學(xué)公式,兩邊對x求導(dǎo)數(shù),得數(shù)學(xué)公式,于是數(shù)學(xué)公式,運(yùn)用此方法可以求得函數(shù)數(shù)學(xué)公式在(1,1)處的切線方程是________.

y=x
分析:仔細(xì)分析題意,找出f(x),g(x),然后依據(jù)題意求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,求出切線方程即可.
解答:仿照題目給定的方法,f(x)=x,g(x)=x
所以f′(x)=1,g′(x)=1
所以,y′=(1×lnx+x•)xx,
∴y′=(1×lnx+x•)xx=1,
即:函數(shù)在(1,1)處的切線的斜率為1,
故切線方程為:y-1=x-1,即y=x
故答案為:y=x.
點(diǎn)評:本題考查導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的運(yùn)算,考查計(jì)算能力,分析問題解決問題的能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

我們把形如的函數(shù)稱為“莫言函數(shù)”,并把其與軸的交點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)稱為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心凡是與“莫言函數(shù)”圖象有公共點(diǎn)的圓,皆稱之為“莫言圓”.當(dāng),時(shí),在所有的“莫言圓”中,面積的最小值   

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對數(shù):在函數(shù)解析式兩邊求對數(shù)得,兩邊對求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是 ­­­­­­_________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考理科數(shù)學(xué)試卷 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對數(shù)法:在函數(shù)解析式兩邊取對數(shù)得,兩邊對x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對法數(shù):在函數(shù)解析式兩邊求對數(shù)得,兩邊對x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是  ▲ 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省高三期中考試數(shù)學(xué)卷 題型:選擇題

Ⅰ(理)我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對數(shù)法:在函數(shù)解析式兩邊求對數(shù)得,兩邊求導(dǎo)數(shù),得

,于是,運(yùn)用此方法可以探求得函數(shù)的一個(gè)單調(diào)遞增區(qū)間是

A.       B.       C.       D.  

 

查看答案和解析>>

同步練習(xí)冊答案