如右圖.M是棱長(zhǎng)為2cm的正方體ABCD-A1B1C1D1的棱CC1的中點(diǎn),沿正方體表面從點(diǎn)A到點(diǎn)M的最短路程是          cm.

 

 

【答案】

【解析】

試題分析:由題意,若以為軸展開,則兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為2,3,故兩點(diǎn)之間的距離是;

若以以為軸展開,則兩點(diǎn)連成的線段所在的直角三角形的兩直角邊的長(zhǎng)度分別為1,4,故兩點(diǎn)之間的距離是;

故沿正方體表面從點(diǎn)到點(diǎn)的最短路程是,

故答案為.

考點(diǎn):多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過(guò)棱CC1到M的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:

(1)該三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);

(2)PC和NC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

如右圖已知每條棱長(zhǎng)都為3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在DD上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面ABCD上運(yùn)動(dòng),則MN中點(diǎn)P的軌跡與此四棱柱的面所圍成的幾何體的體積為 _____________

 

查看答案和解析>>

同步練習(xí)冊(cè)答案