在平面直角坐標(biāo)系xoy中,給定三點(diǎn),點(diǎn)P到直線BC的距離是該點(diǎn)到直線AB,AC距離的等比中項(xiàng).
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)若直線L經(jīng)過(guò)△ABC的內(nèi)心(設(shè)為D),且與P點(diǎn)的軌跡恰好有3個(gè)公共點(diǎn),求L的斜率k的取值范圍.
【答案】分析:(Ⅰ)直線AB、AC、BC的方程依次為.點(diǎn)P(x,y)到AB、AC、BC的距離依次為.由此能求出點(diǎn)P的軌跡方程.
(Ⅱ)點(diǎn)P的軌跡包含圓S:2x2+2y2+3y-2=0與雙曲線T:8x2-17y2+12y-8=0.△ABC的內(nèi)心D也是適合題設(shè)條件的點(diǎn),由d1=d2=d3,解得.設(shè)L的方程為.再分情況討論能夠求出直線L的斜率k的取值范圍.
解答:解:(Ⅰ)直線AB、AC、BC的方程依次為.點(diǎn)P(x,y)到AB、AC、BC的距離依次為.依設(shè),d1d2=d32,得|16x2-(3y-4)2|=25y2,即16x2-(3y-4)2+25y2=0,或16x2-(3y-4)2-25y2=0,化簡(jiǎn)得點(diǎn)P的軌跡方程為
圓S:2x2+2y2+3y-2=0與雙曲線T:8x2-17y2+12y-8=0
(Ⅱ)由前知,點(diǎn)P的軌跡包含兩部分
圓S:2x2+2y2+3y-2=0①
與雙曲線T:8x2-17y2+12y-8=0②△ABC的內(nèi)心D也是適合題設(shè)條件的點(diǎn),由d1=d2=d3,解得,且知它在圓S上.直線L經(jīng)過(guò)D,且與點(diǎn)P的軌跡有3個(gè)公共點(diǎn),所以,L的斜率存在,設(shè)L的方程為
(i)當(dāng)k=0時(shí),L與圓S相切,有唯一的公共點(diǎn)D;此時(shí),直線平行于x軸,表明L與雙曲線有不同于D的兩個(gè)公共點(diǎn),所以L恰好與點(diǎn)P的軌跡有3個(gè)公共點(diǎn).
(ii)當(dāng)k≠0時(shí),L與圓S有兩個(gè)不同的交點(diǎn).這時(shí),L與點(diǎn)P的軌跡恰有3個(gè)公共點(diǎn)只能有兩種情況:
情況1:直線L經(jīng)過(guò)點(diǎn)B或點(diǎn)C,此時(shí)L的斜率,直線L的方程為x=±(2y-1).代入方程②得y(3y-4)=0,解得.表明直線BD與曲線T有2個(gè)交點(diǎn)B、E;直線CD與曲線T有2個(gè)交點(diǎn)C、F.
故當(dāng)時(shí),L恰好與點(diǎn)P的軌跡有3個(gè)公共點(diǎn).(11分)
情況2:直線L不經(jīng)過(guò)點(diǎn)B和C(即),因?yàn)長(zhǎng)與S有兩個(gè)不同的交點(diǎn),所以L與雙曲線T有且只有一個(gè)公共點(diǎn).即方程組有且只有一組實(shí)數(shù)解,消去y并化簡(jiǎn)得
該方程有唯一實(shí)數(shù)解的充要條件是8-17k2=0④

解方程④得,解方程⑤得
綜合得直線L的斜率k的取值范圍.(14分)
點(diǎn)評(píng):求題考查點(diǎn)的軌跡方程的求法和求L的斜率k的取值范圍,解題時(shí)要認(rèn)真審題,注意分類討論思想的合理運(yùn)用,利用圓錐曲線的性質(zhì)恰當(dāng)?shù)剡M(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案