【題目】已知函數(shù),其中

1)若曲線在點處的切線與直線平行,求的值;

2)求函數(shù)的單調(diào)區(qū)間.

【答案】1;(2)當時,遞減區(qū)間為,遞增區(qū)間為;當時,遞增區(qū)間為,,遞減區(qū)間為;當時,遞增區(qū)間為;當時,遞增區(qū)間為,,遞減區(qū)間為

【解析】

1)解方程可得結(jié)果;

2)對分類討論,解不等式可得遞增區(qū)間,解不等式可得遞減區(qū)間.

1)由可知,

函數(shù)定義域為,且

依題意,,解得

2)依題意,,

,得

①當時,,由,得;由,得.則函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

②當,即時,由,得,由,得.則函數(shù)的單調(diào)遞增區(qū)間為,,函數(shù)的單調(diào)遞減區(qū)間為

③當,即時,恒成立,則函數(shù)的單調(diào)遞增區(qū)間為

④當,即時,由,得,由,得,則函數(shù)的單調(diào)遞增區(qū)間為.函數(shù)的單調(diào)遞減區(qū)間為

綜上所述,當時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

時,函數(shù)的單調(diào)遞增區(qū)間為,,函數(shù)的單調(diào)遞減區(qū)間為;

時,函數(shù)的單調(diào)遞增區(qū)間為;

時,函數(shù)的單調(diào)遞增區(qū)間為,函數(shù)的單調(diào)遞減區(qū)間為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】獨立性檢驗中,假設:運動員受傷與不做熱身運動沒有關系.在上述假設成立的情況下,計算得的觀測值.下列結(jié)論正確的是

A. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動有關

B. 在犯錯誤的概率不超過0.01的前提下,認為運動員受傷與不做熱身運動無關

C. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動有關

D. 在犯錯誤的概率不超過0.005的前提下,認為運動員受傷與不做熱身運動無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知可以用一系列半徑為且彼此不重疊的圓盤覆蓋平面上的所有格點在平面直角坐標系中,橫、縱坐標都是整數(shù)的點為格點),______4 (填“大于~小于”或等于”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P—ABCD是正四棱錐,是正方體,其中

1)求證:;

2)求平面PAD與平面所成的銳二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C(ab0)過點,離心率為.

1)求橢圓C的方程;

2)若斜率為的直線l與橢圓C交于A,B兩點,試探究是否為定值?若是定值,則求出此定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關關系.

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程

2)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.

參與公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)a為常數(shù),且)在處取得極值.

1)求實數(shù)a的值,并求的單調(diào)區(qū)間;

2)關于x的方程上恰有1個實數(shù)根,求實數(shù)b的取值范圍;

3)求證:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象與直線ya恰有三個不同的交點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案