【題目】已知函數(shù).

1)當時,討論的極值點個數(shù);

2)若時,,求的取值范圍.

【答案】1)一個極值點;(2.

【解析】

1)求出,令,求出,利用導數(shù)判斷的單調(diào)性,從而判斷函數(shù)的單調(diào)性,從而由極點的定義即可求解.

2)等式可化為恒成立,令,只需,利用導數(shù)求即可.

1

,當,當,

所以遞減在遞增,所以

因為所以,恒成立,

則當時,時,

所以遞增,遞減,所以唯一極值點,

所以只有一個極值點

2)因為,不等式可化為恒成立,

,只需

因為,令,則

,所以遞增,遞減.

.

所以存在唯一零點,在存在唯一零點,

時,

時,,

時,

,

所以上為減函數(shù)在上為增函數(shù),

所以較小者,

,

因為,所以

所以

綜上,,所以.

所以,滿足題意的的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

1)求直線l的普通方程和曲線C的直角坐標方程;

2)若直線l與曲線C相交于A,B兩點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果對于函數(shù)fx)定義域內(nèi)任意的兩個自變量的值x1,x2,當x1x2時,都有fx1fx2),且存在兩個不相等的自變量值y1,y2,使得fy1)=fy2),就稱fx)為定義域上的不嚴格的增函數(shù).則①,②,③,④,四個函數(shù)中為不嚴格增函數(shù)的是_____,若已知函數(shù)gx)的定義域、值域分別為A、B,A{1,23},BA,且gx)為定義域A上的不嚴格的增函數(shù),那么這樣的gx)有_____個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點的橫坐標表示服用第種藥后血藥濃度達峰(最高濃度)時間,其它點的橫坐標分別表示服用三種新藥后血藥濃度首次降到峰值一半時所用的時間(單位:),點的縱坐標表示第種藥的血藥濃度的峰值.為服用第種藥后達到血藥濃度峰值時,血藥濃度提高的平均速度,記為服用第種藥后血藥濃度從峰值首次降到峰值的一半所用的時間,則中最小的,中最大的分別是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的圖像在處的切線方程;

2)求函數(shù)的極大值;

3)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( 。

A. 這15天日平均溫度的極差為

B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天

C. 由折線圖能預測16日溫度要低于

D. 由折線圖能預測本月溫度小于的天數(shù)少于溫度大于的天數(shù)

查看答案和解析>>

同步練習冊答案