(2012•重慶)設A,B為直線y=x與圓x2+y2=1的兩個交點,則|AB|=( 。
分析:由圓的方程找出圓心坐標和半徑r,根據(jù)圓心在直線y=x上,得到AB為圓的直徑,根據(jù)直徑等于半徑的2倍,可得出|AB|的長.
解答:解:由圓x2+y2=1,得到圓心坐標為(0,0),半徑r=1,
∵圓心(0,0)在直線y=x上,
∴弦AB為圓O的直徑,
則|AB|=2r=2.
故選D
點評:此題考查了直線與圓相交的性質,以及圓的標準方程,當直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設f(x)=alnx+
1
2x
+
3
2
x+1
,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(Ⅰ) 求a的值;
(Ⅱ) 求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設平面點集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
,則A∩B所表示的平面圖形的面積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設函數(shù)f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
π
6
處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函數(shù)y=f(x)的值域
(Ⅱ)若f(x)在區(qū)間[-
2
π
2
]
上為增函數(shù),求ω的最大值.

查看答案和解析>>

同步練習冊答案