(2012•重慶)設(shè)平面點集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
,則A∩B所表示的平面圖形的面積為( 。
分析:先分別畫出集合A與集合B表示的平面區(qū)域,再畫出它們的公共部分,最后利用圓的面積公式及圖形的對稱性,計算所求面積即可
解答:解:∵(y-x)(y-
1
x
)≥0
?
y-x≥0
y-
1
x
≥0
y-x≤0
y-
1
x
≤0
其表示的平面區(qū)域如圖,(x-1)2+(y-1)2≤1表示以(1,1)為圓心,1為半徑的圓及其內(nèi)部區(qū)域,其面積為π
∴A∩B所表示的平面圖形為上述兩區(qū)域的公共部分,如圖陰影區(qū)域,
由于圓和y=
1
x
均關(guān)于y=x對稱,
故陰影部分面積為圓的面積的一半,即
π
2

故選 D
點評:本題主要考查了二元不等式表示平面區(qū)域的知識和延伸,準(zhǔn)確的畫出兩集合表示的平面區(qū)域是解決本題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)f(x)=alnx+
1
2x
+
3
2
x+1
,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(Ⅰ) 求a的值;
(Ⅱ) 求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
π
6
處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)在x=-2處取得極小值,則函數(shù)y=xf′(x)的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函數(shù)y=f(x)的值域
(Ⅱ)若f(x)在區(qū)間[-
2
,
π
2
]
上為增函數(shù),求ω的最大值.

查看答案和解析>>

同步練習(xí)冊答案