【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,,使成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)求出導(dǎo)函數(shù)的最大值,從而求出的范圍即可; (2)問(wèn)題等價(jià)于當(dāng)時(shí),有,通過(guò)討論的范圍,得到函數(shù)的單調(diào)區(qū)間,從而求出的具體范圍即可.
解:已知函數(shù)的定義域?yàn)?/span>.
(1)因?yàn)?/span>在上為減函數(shù),故在上恒成立,即當(dāng)時(shí),.
又,
故當(dāng),即時(shí),.
所以,于是,故的最小值為.
(2)命題“若存在,使成立”等價(jià)于“當(dāng)時(shí),有”.
由(1)知,當(dāng)時(shí),,所以.
故問(wèn)題等價(jià)于:“當(dāng)時(shí),有”
①當(dāng)時(shí),由(2)知,在上為減函數(shù),
則,故.
②當(dāng),時(shí),,由(1)知,函數(shù)在上是減函數(shù),,所以,與矛盾,不合題意.
綜上,得實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)滿足,且,則下列說(shuō)法正確的有( )
(1)若函數(shù),則函數(shù)是奇函數(shù);
(2);
(3)設(shè)函數(shù),則函數(shù)的圖象經(jīng)過(guò)點(diǎn);
(4)設(shè),若數(shù)列是等比數(shù)列,則.
A.(2)(3)(4)B.(1)(3)(4)C.(1)(3)D.(1)(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=1,AD=2,點(diǎn)E、F分別在線段AB、AD上,且EF∥CD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體M﹣BCDEF,則折疊后的幾何體的體積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)棋藝協(xié)會(huì)定期舉辦“以棋會(huì)友”的競(jìng)賽活動(dòng),分別包括“中國(guó)象棋”、“圍棋”、“五子棋”、“國(guó)際象棋”四種比賽,每位協(xié)會(huì)會(huì)員必須參加其中的兩種棋類比賽,且各隊(duì)員之間參加比賽相互獨(dú)立;已知甲同學(xué)必選“中國(guó)象棋”,不選“國(guó)際象棋”,乙同學(xué)從四種比賽中任選兩種參與.
(1)求甲參加圍棋比賽的概率;
(2)求甲、乙兩人參與的兩種比賽都不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形中,,,是的中點(diǎn),為的中點(diǎn),以為折痕將向上折起,使點(diǎn)折到點(diǎn),且.
(1)求證: 面;
(2)求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是拋物線的焦點(diǎn),恰好又是雙曲線的右焦點(diǎn),雙曲線過(guò)點(diǎn),且其離心率為.
(1)求拋物線和雙曲線的標(biāo)準(zhǔn)方程;
(2)已知直線過(guò)點(diǎn),且與拋物線交于,兩點(diǎn),以為直徑作圓,設(shè)圓與軸交于點(diǎn),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形中,,,,是線段的中點(diǎn),沿將翻折到,使得平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過(guò)點(diǎn),且與曲線交于兩點(diǎn),試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式恒成立,求的取值范圍;
(2)當(dāng)時(shí),求證:;
(3)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com