已知二次函數(shù),滿足,且方程有兩個(gè)相等的實(shí)根.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最小值的表達(dá)式.

(1);(2)

解析試題分析:(1)應(yīng)用結(jié)論:函數(shù)滿足,則直線是函數(shù)圖象的對稱軸,一般地函數(shù)滿足,則直線是函數(shù)圖象的對稱軸.(2)二次函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,我們在求二次函數(shù)在區(qū)間上的最值時(shí),要特別注意的關(guān)系,也即要討論在區(qū)間上單調(diào)性,則單調(diào)性得出最值.
試題解析:解:(1)由,得:對稱軸,
由方程有兩個(gè)相等的實(shí)根可得:
解得
.   5分
(2)
①當(dāng),即時(shí),;    6分
②當(dāng),即時(shí),;    8分[
③當(dāng)時(shí),;    10分
綜上:.    12分
考點(diǎn):1、函數(shù)圖象的對稱性;2、二次函數(shù)在給定區(qū)間的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)上的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)證明:上為增函數(shù);
(Ⅲ)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是奇函數(shù),并且函數(shù)的圖像經(jīng)過點(diǎn)(1,3),(1)求實(shí)數(shù)的值;(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)直線AM,BM相交于點(diǎn)M,且.
(1)求點(diǎn)M的軌跡的方程;
(2)過定點(diǎn)(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),且,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為奇函數(shù),且當(dāng)時(shí),.當(dāng)時(shí),的最大值為,最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).(I)求函數(shù)的單調(diào)遞增區(qū)間;
(II) 若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),是否存在實(shí)數(shù)a、b、c,使同時(shí)滿足下列三個(gè)條件:(1)定義域?yàn)镽的奇函數(shù);(2)在上是增函數(shù);(3)最大值是1.若存在,求出a、b、c;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/2/1bd0c3.png" style="vertical-align:middle;" /> 
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中e為自然對數(shù)的底數(shù),且當(dāng)x>0時(shí)恒成立.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求實(shí)數(shù)a的所有可能取值的集合;
(Ⅲ)求證:.

查看答案和解析>>

同步練習(xí)冊答案