已知數(shù)列滿足:
(Ⅰ) 求證:數(shù)列是等差數(shù)列并求的通項(xiàng)公式;
(Ⅱ) 設(shè),求證:.

(Ⅰ) ;(Ⅱ)略.

解析試題分析:(Ⅰ) 通過分析遞推關(guān)系,可得,根據(jù)等差數(shù)列的定義可證;(Ⅱ)分析通項(xiàng)公式可知其求和為裂項(xiàng)求和.
試題解析:(Ⅰ)證明: 兩邊同除以得:
所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列    3分
于是       6分
(Ⅱ)由(Ⅰ),

==    12分
考點(diǎn):等差數(shù)列的證明,裂項(xiàng)求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,若,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)是否存在,使得,若存在,求出所有滿足條件的;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若{an}又是等比數(shù)列,令bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,數(shù)列的前n項(xiàng)和為,若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

單調(diào)遞增數(shù)列的前項(xiàng)和為,且滿足,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,,記數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù)、,且,使得、成等比數(shù)列?若存在,求出所有符合條件的的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,求等差數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令求數(shù)列前n項(xiàng)和的公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個(gè)新的數(shù)列,是否存在正整數(shù)(其中)使得都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案