【題目】已知,.
(1)若對(duì)任意的實(shí)數(shù),恒有,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求證:方程恒有兩解.
【答案】(Ⅰ);(Ⅱ)詳見(jiàn)解析.
【解析】試題分析:(Ⅰ)轉(zhuǎn)化為關(guān)于的二次不等式,進(jìn)而得,令,利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值,即可求解實(shí)數(shù)的取值范圍;
(Ⅱ)方程化為,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,得到在和各有一個(gè)零點(diǎn),即可得方程恒有兩解.
試題解析:
(Ⅰ)要使f(x)<g(x)恒成立,即使成立,
整理成關(guān)于a的二次不等式,
只要保證△<0,
,
整理為, 。╥)
下面探究(i)式成立的條件,令,,,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,x=1時(shí)有最小值,,,.
實(shí)數(shù)b 的取值范圍是(-1,2).
(Ⅱ)方程化為,
令,,
在(0,+∞)上單調(diào)遞增,,,
存在使,即,,在上單調(diào)遞減,在上單調(diào)遞增, 在處取得最小值.
,
,<0,
,,在和各有一個(gè)零點(diǎn),故方程恒有兩解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都是從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出一個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲得一等獎(jiǎng);若只有1個(gè)紅球,則獲得二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中或一等獎(jiǎng)的次數(shù)為,求的分布列、數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心為坐標(biāo)原點(diǎn)、焦點(diǎn)在坐標(biāo)軸上的橢圓經(jīng)過(guò)點(diǎn)和點(diǎn),直線:與橢圓交于不同的,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上存在點(diǎn),使得四邊形恰好為平行四邊形,求直線與坐標(biāo)軸圍成的三角形面積的最小值以及此時(shí),的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體上任意選擇個(gè)頂點(diǎn),然后將它們兩兩相連,則可能組成的幾何圖形為_________(寫出所有正確結(jié)論的編號(hào)).
①矩形;②不是矩形的平行四邊形;③有三個(gè)面為等腰直角三角形,有一個(gè)面為等邊三角形的四面體;④每個(gè)面都是等邊三角形的四面體;⑤每個(gè)面都是直角三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是橢圓 的四個(gè)頂點(diǎn),菱形的面積與其內(nèi)切圓面積分別為, .橢圓的內(nèi)接的重心(三條中線的交點(diǎn))為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2) 的面積是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為雙曲線的左、右焦點(diǎn),過(guò)的直線與圓相切于點(diǎn),且,則雙曲線的離心率為( )
A. B. 2 C. 3 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平面平面平面,且位于與之間.點(diǎn),,,,.
(1)求證:.
(2)設(shè)AD與CF不平行,且A,B,C,D為定點(diǎn),與間的距離為,與間的距離為h.當(dāng)的值是多少時(shí),的面積最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com