已知函數(shù)f(x)=ln(x+1)-數(shù)學(xué)公式(k為常數(shù))
(1)求f(x)的單調(diào)區(qū)間;
(2)求證不等式數(shù)學(xué)公式在x∈(0,1)時(shí)恒成立.

解:(1)f(x)的定義域?yàn)椋?1,+∞)(1分)
f'(x)=(2分)
令f'(x)>0得:x>k-1
當(dāng)k-1≤-1即k≤0時(shí),f(x)的單調(diào)遞增區(qū)間是(-1,+∞)(3分)
當(dāng)k-1>-1即k>0時(shí),f(x)的單調(diào)遞減區(qū)間是(-1,k-1),f(x)的單調(diào)遞增區(qū)間是(k-1,+∞)(5分)
(2)當(dāng)x∈(0,1)時(shí),原不等式等價(jià)于ln(x+1)>2.
令g(x)=ln(x+1)+(7分)
∵x∈(0,1)∴g'(x)>0恒成立
∴g(x)在(0,1)是單調(diào)遞增(9分)
∴g(x)>g(0)=2
∴g(x)>2在(0,1)上恒成立
故原不等式在區(qū)間(0,1)上恒成立.(12分)
分析:(1)求出函數(shù)的定義域,求出導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0,求出x的范圍,通過討論x的范圍與定義域的關(guān)系,求出遞增區(qū)間和遞減區(qū)間
(2)通過構(gòu)造函數(shù)g(x),利用導(dǎo)函數(shù)研究g(x)的單調(diào)性,利用函數(shù)的單調(diào)性,求出函數(shù)的最小值,不等式得證.
點(diǎn)評:本題考查利用導(dǎo)函數(shù)求函數(shù)的單調(diào)性、利用函數(shù)的單調(diào)性求函數(shù)的最值、通過構(gòu)造函數(shù)證明不等式、分類討論的數(shù)學(xué)思想方法在解題中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案