已知
a
=3
i
-4
j
a
+
b
=4
i
-3
j
i
j
為相互垂直的單位向量.
(1)求向量
a
,
b
的夾角;
(2)對非零向量
p
q
,如果存在不為零的常數(shù)α,β使α
p
q
=
0
,那么稱向量
p
,
q
是線性相關(guān)的,否則稱向量
p
,
q
是線性無關(guān)的.向量
a
,
b
是線性相關(guān)還是線性無關(guān)?為什么?
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:(1)由題意求得
b
=
i
+
j
,可得|
a
|、|
b
|、
a
b
 的值,再由 cos<
a
,
b
>=
a
b
|
a
|•|
b
|
 求得<
a
b
>的值.
(2)設(shè)α•
a
+β•
b
=0,求得α=β=0,從而得出結(jié)論.
解答: 解:(1)由題意知
a
=3
i
-4
j
,
a
+
b
=4
i
-3
j
 可得
b
=4
i
-3
j
-
a
=
i
+
j
,
∴|
a
|=
9+16
=5,|
b
|=
2
,
a
b
=(3
i
-4
j
)•(
i
+
j
)=-1,
∴cos<
a
,
b
>=
a
b
|
a
|•|
b
|
=
-1
5
2
=-
2
10
,∴<
a
,
b
>=π-arccos
2
10

(2)設(shè)α•
a
+β•
b
=0,可得α(3
i
-4
j
)+β(
i
+
j
)=0,
即 (3α+β)
i
+(β-4α)
j
=0,∴
3α+β=0
β-4α=0
,解得α=β=0,
故不存在不為零的常數(shù)α,β使α
a
b
=
0
,故向量
a
,
b
是線性無關(guān).
點評:本題主要考查用兩個向量的數(shù)量積表示兩個向量的夾角,兩個向量線性相關(guān)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的對角線AC與BD相交于E點,將△ABC沿對角線AC折起,使得平面ABC⊥平面ADC(如圖),則下列命題中正確的為(  )
A、直線AB⊥直線CD,且直線AC⊥直線BD
B、直線AB⊥平面BCD,且直線AC⊥平面BDE
C、平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D、平面ABD⊥平面BCD,且平面ACD⊥平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項的和Sn=2n2-n+1,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=-2e時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-2x在[1,4]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,已知內(nèi)角A,B,C的對邊分別是a,b,c,向量
m
=(2sin(A+C),-
3
),
n
=(cos2B,2cos2
B
2
-1),且向量
m
n
共線.
(1)求角B的大;
(2)如果b=1,求△ABC的面積S△ABC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,且Sn=
an2+an
2
(n∈N*
(Ⅰ)求證數(shù)列{an}是等差數(shù)列;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
1
Sn
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1-x)6(1+x+x2)的展開式中,x2的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β為常數(shù).
(1)求α,β的值;
(2)證明數(shù)列{an}為等差數(shù)列;
(3)設(shè)bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2xcos2
φ
2
+cos2xsinφ-sin2x(0<φ<π)圖象的一條對稱軸為x=
π
3

(Ⅰ)求φ的值;
(Ⅱ)若存在x0∈[-
π
3
,
π
6
]使得|f(x0)-m|≤
1
2
成立,求實數(shù)m的取值范圍;
(Ⅲ)已知函數(shù)g(x)=|f(
ωx
2
-
12
)|+|cosωx|在區(qū)間[0,1]上恰有50次取到最大值,求正數(shù)ω的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案