(2005•金山區(qū)一模)函數(shù)f(x)=
xax+b
(a,b是非零實(shí)常數(shù)),滿足f(2)=1,且方程f(x)=x有且僅有一個(gè)解.
(1)求a、b的值;
(2)是否存在實(shí)常數(shù)m,使得對(duì)定義域中任意的x,f(x)+f(m-x)=4恒成立?為什么?
(3)在直角坐標(biāo)系中,求定點(diǎn)A(-3,1)到此函數(shù)圖象上任意一點(diǎn)P的距離|AP|的最小值.
分析:(1)根據(jù)方程f(x)=x,可知x=0一定是方程
x
ax+b
=x的解,從而有方程
1
ax+b
=1無(wú)解或有解為0,再進(jìn)行分類討論,可求a、b的值;
(2)由(1)知f(x)=
2x
x+2
,假設(shè)存在常數(shù)m,使得對(duì)定義域中任意的x,f(x)+f(m-x)=4恒成立,賦值x=0,,可求參數(shù)m的值,再驗(yàn)證此時(shí)等式恒成立即可;
(3)先表示出|AP|2,再利用換元法,求解時(shí)整體考慮,利用配方法求解
解答:解:(1)由f(2)=1得2a+b=2,又x=0一定是方程
x
ax+b
=x的解,
所以
1
ax+b
=1無(wú)解或有解為0,(3分)
若無(wú)解,則ax+b=1無(wú)解,得a=0,矛盾,
若有解為0,則b=1,所以a=
1
2
. (6分)
(2)f(x)=
2x
x+2
,設(shè)存在常數(shù)m,使得對(duì)定義域中任意的x,f(x)+f(m-x)=4恒成立,
取x=0,則f(0)+f(m-0)=4,即
2m
m+2
=4,m=-4(必要性)(8分)
又m=-4時(shí),f(x)+f(-4-x)=
2x
x+2
+
2(-4-x)
-4-x+2
=…=4成立(充分性) (10分)
所以存在常數(shù)m=-4,使得對(duì)定義域中任意的x,f(x)+f(m-x)=4恒成立,(11分)
(3)|AP|2=(x+3)2+(
x-2
x+2
2,設(shè)x+2=t,t≠0,(13分)
則|AP|2=(t+1)2+(
t-4
t
2=t2+2t+2-
8
t
+
16
t2
=(t2+
16
t2
)+2(t-
4
t
)+2=(t-
4
t
2+2(t-
4
t
)+10
=( t-
4
t
+1)2+9,(16分)
所以當(dāng)t-
4
t
+1=0時(shí)即t=
-1±
17
2
,也就是x=
-5±
17
2
時(shí),
|AP|min=3 (18分)
點(diǎn)評(píng):本題的考點(diǎn)是恒成立問(wèn)題,主要考查方程解的問(wèn)題,考查利用賦值法求解恒成立問(wèn)題,考查函數(shù)的最值問(wèn)題,關(guān)鍵是審清題意,合理轉(zhuǎn)化,注意賦值法求解恒成立問(wèn)題時(shí),應(yīng)需要驗(yàn)證其恒成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)對(duì)于集合N={1,2,3,…,n}的每一個(gè)非空子集,定義一個(gè)“交替和”如下:按照遞減的次序重新排列該子集,然后從最大數(shù)開(kāi)始交替地減、加后繼的數(shù).例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和為5.當(dāng)集合N中的n=2時(shí),集合N={1,2}的所有非空子集為{1},{2},{1,2},則它的“交替和”的總和S2=1+2+(2-1)=4,請(qǐng)你嘗試對(duì)n=3、n=4的情況,計(jì)算它的“交替和”的總和S3、S4,并根據(jù)其結(jié)果猜測(cè)集合N={1,2,3,…,n}的每一個(gè)非空子集的“交替和”的總和Sn=
n•2n-1
n•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)已知集合A={x|y=lg(x-3)},B={x|y=
5-x
},則A∩B=
{x|3<x≤5}
{x|3<x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)定義在R上的函數(shù)f(x)是奇函數(shù),則f(0)的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)設(shè)函數(shù)f(x)=lgx,則它的反函數(shù)f-1(x)=
10x,x∈R
10x,x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•金山區(qū)一模)若復(fù)數(shù)z1=3-i,z2=7+2i,(i為虛數(shù)單位),則|z2-z1|=
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案