若橢圓
x2
16
+
y2
m
=1的離心率為
1
3
,則m的值為
128
9
或18
128
9
或18
分析:分當(dāng)橢圓焦點(diǎn)在x軸上或焦點(diǎn)在y軸上進(jìn)行討論,根據(jù)橢圓的標(biāo)準(zhǔn)方程算出a、b、c值,由離心率為
1
3
建立關(guān)于m的方程,解之即可得到實(shí)數(shù)m之值.
解答:解:∵橢圓方程為
x2
16
+
y2
m
=1,
∴①當(dāng)橢圓焦點(diǎn)在x軸上時(shí),a2=16,b2=m,
可得c=
a2-b2
=
16-m
,
離心率e=
16-m
4
=
1
3
,化簡(jiǎn)得1-
m
16
=
1
9
,解得m=
128
9

②當(dāng)橢圓焦點(diǎn)在y軸上時(shí),a2=m,b2=16,
可得c=
a2-b2
=
m-16

離心率e=
m-16
m
=
1
3
,化簡(jiǎn)得1-
16
m
=
1
9
,解得m=18.
綜上所述m=
128
9
或m=18
故答案為:
128
9
或18
點(diǎn)評(píng):本題給出橢圓含有參數(shù)m的方程,在已知橢圓離心率的情況下求m的值.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在O為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A(4,-3)為△OAB的直角頂點(diǎn).已知|
AB
|=2|
OA
|
且點(diǎn)B的縱坐標(biāo)大于零.
(1)求圓x2-6x+y2+2y=0關(guān)于直線OB對(duì)稱的圓的方程;
(2)設(shè)直線l平行于直線AB且過(guò)點(diǎn)(0,a),問(wèn)是否存在實(shí)數(shù)a,使得橢圓
x2
16
+y2=1
上有兩個(gè)不同的點(diǎn)關(guān)于直線l對(duì)稱,若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)給出下列命題:
①若p,q是兩個(gè)命題,則“p∧q為真”是“p∨q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過(guò)點(diǎn)F1,則△ABF2的周長(zhǎng)為16,
③過(guò)點(diǎn)(0,2)與拋物線y2=-5x僅有一個(gè)公共點(diǎn)的直線有3條;
④導(dǎo)數(shù)為0的點(diǎn)一定是函數(shù)的極值點(diǎn).
其中不是真命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=-
1
4
x+b
交橢圓
x2
16
+y2=1
于A,B兩點(diǎn),若AB中點(diǎn)橫坐標(biāo)為1,則b=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在以O(shè)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中,
OA
AB
,點(diǎn)A(4,-3),B點(diǎn)在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標(biāo)及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關(guān)于直線OB對(duì)稱的圓的方程;
(3) 設(shè)直線l
AB
為方向向量且過(guò)(0,a)點(diǎn),問(wèn)是否存在實(shí)數(shù)a,使得橢圓
x2
16
+y2=1上有兩個(gè)不同的點(diǎn)關(guān)于直線l對(duì)稱.若不存在,請(qǐng)說(shuō)明理由; 存在請(qǐng)求出實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)給出下列命題:
①若p,q是兩個(gè)簡(jiǎn)單命題,則“p且q為真”是“p或q為真”的必要不充分條件;
②若橢圓
x2
16
+
y2
25
=1
的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,且弦AB過(guò)點(diǎn)F1,則△ABF2的周長(zhǎng)為16;
③過(guò)點(diǎn)(0,2)與拋物線y2=-5x僅有一個(gè)公共點(diǎn)的直線有3條;
④導(dǎo)數(shù)為0的點(diǎn)一定是函數(shù)的極值點(diǎn).
其中正確的結(jié)論的序號(hào)是
 
(要求寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案