19.在△ABC中,$B({\sqrt{3},0})$、$C({-\sqrt{3},0})$,動點A滿足$|AC|+|AB|=\frac{{2\sqrt{3}}}{3}|BC|$.
(1)求動點A的軌跡D的方程;
(2)若點$P({\frac{1}{2},\frac{1}{4}})$,經(jīng)過點P作一條直線l與軌跡D相交于點M,N,并且P為線段MN的中點,求直線l的方程.

分析 (1)確定動點A的軌跡是以B,C為焦點的橢圓(除去左右頂點),a=2,c=$\sqrt{3}$,b=1,即可求動點A的軌跡D的方程;
(2)利用點差法,求出直線的斜率,即可求直線l的方程.

解答 解:(1)$|AC|+|AB|=\frac{{2\sqrt{3}}}{3}|BC|$=4>2$\sqrt{3}$,
∴動點A的軌跡是以B,C為焦點的橢圓(除去左右頂點),a=2,c=$\sqrt{3}$,b=1,
∴動點A的軌跡D的方程$\frac{{x}^{2}}{4}+{y}^{2}$=1(x≠±2);
(2)設(shè)M(x1,y1),N(x2,y2),則x1+x2=1,y1+y2=$\frac{1}{2}$,
M,N代入橢圓方程,相減整理可得kMN=-$\frac{1}{2}$,
∴直線l的方程為y=$-\frac{1}{2}x+\frac{1}{2}$.

點評 本題考查軌跡方程,考查橢圓的定義,考查點差法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)定義在R上的函數(shù)f(x)、f1(x)和f2(x),滿足f(x)=f1(x)+f2(x),且對任意實數(shù)x1、x2(x1≠x2),恒有|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|成立.
(1)試寫 出一組滿足條件的具體的f1(x)和f2(x),使f1(x)為增函數(shù),f2(x)為減函數(shù),但f(x)為增函數(shù).
(2)判斷下列兩個命題的真假,并說明理由.
命題1):若f1(x)為增函數(shù),則f(x)為增函數(shù);
命題2):若f2(x)為增函數(shù),則f(x)為增函數(shù).
(3)已知f(x)=x3+x2+x+1,寫出一組滿足條件的具體的f1(x)和f2(x),且f2(x)為非常值函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x2-2kx-8在區(qū)間[0,14]上為增函數(shù),則實數(shù)k的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}滿足${a_{n+1}}=\frac{{4{a_n}-2}}{{{a_n}+1}}$(n∈N*
(1)若a1=3,${b_n}=\frac{{2-{a_n}}}{{{a_n}-1}}$(n∈N*),求證數(shù)列{bn}是等比數(shù)列,并求{bn}的通項公式bn
(2)若an>an+1對?n∈N*恒成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正四面體ABCD,則直線BC與平面ACD所成角的正弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“x>1”是“x2>x”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某銷售代理商主要代理銷售新京報、北京晨報、北京青年報三種報刊.代理商統(tǒng)計了過去連續(xù)100天的銷售情況,數(shù)據(jù)如下:
20002100220023002400
新京報1015303510
北京晨報182040202
北京青年報352520155
三種報刊中,日平均銷售量最大的報刊是新京報;如果每份北京晨報的銷售利潤分別為新京報的1.5倍,北京青年報的1.2倍,那么三種報刊日平均銷售利潤最大的報刊是北京晨報.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x∈(1,+∞),log3(x+2)-$\frac{2}{{2}^{x}}$>0,則下列敘述正確的是( 。
A.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$≤0B.¬p為:?x∈(1,+∞),log3(x+2)-$\frac{2}{2^x}$<0
C.¬p為:?x∈(-∞,1],log3(x+2)-$\frac{2}{2^x}$≤0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=|x2-2x-3|,則f(x)在(-1,+∞)上的減區(qū)間為[1,3].

查看答案和解析>>

同步練習(xí)冊答案