【題目】已知橢圓與直線(xiàn)交于兩點(diǎn),不與軸垂直,圓.

(1)若點(diǎn)在橢圓上,點(diǎn)在圓上,求的最大值;

(2)若過(guò)線(xiàn)段的中點(diǎn)且垂直于的直線(xiàn)過(guò)點(diǎn),求直線(xiàn)的斜率的取值范圍.

【答案】(1)(2).

【解析】

(1)由圓的幾何性質(zhì)得到,由兩點(diǎn)間距離公式得到,再根據(jù)點(diǎn)在橢圓上二元化一元,結(jié)合二次函數(shù)的性質(zhì)得到結(jié)果;(2)聯(lián)立直線(xiàn)和橢圓方程,根據(jù)韋達(dá)定理得到點(diǎn)的坐標(biāo)為,直線(xiàn)的斜率為,再由兩直線(xiàn)的垂直關(guān)系得到代入判別式得到參數(shù)的范圍.

(1)依題意,圓,即圓,圓心為.

所以.

設(shè),則.*)

,所以.

代入(*)中,可得.

所以,即,所以.

(2)依題意,設(shè)直線(xiàn).

消去整理得.

因?yàn)橹本(xiàn)與橢圓交于不同的兩點(diǎn),

所以,整理得.①

設(shè),,則.

設(shè)點(diǎn)的坐標(biāo)為,則,所以,

所以點(diǎn)的坐標(biāo)為.

所以直線(xiàn)的斜率為.

又直線(xiàn)和直線(xiàn)垂直,則,所以.

代入①式,可得.

解得.

所以直線(xiàn)的斜率的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市開(kāi)展年終大回饋,設(shè)計(jì)了兩種答題游戲方案:

方案一:顧客先回答一道多選題,從第二道開(kāi)始都回答單選題;

方案二:顧客全部選擇單選題進(jìn)行回答;

其中每道單選題答對(duì)得2分,每道多選題答對(duì)得3分,無(wú)論單選題還是多選題答錯(cuò)都得0分,每名參與的顧客至多答題3道.在答題過(guò)程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈(zèng)品.

為了調(diào)查顧客對(duì)方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:

男性

女性

選擇方案一

150

80

選擇方案二

150

120

(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?

(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.

①若小明選擇方案一,記小明的得分為,求的分布列及期望;

②如果你是小明,你覺(jué)得選擇哪種方案更有可能獲得贈(zèng)品,請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】非空有限集合是由若干個(gè)正實(shí)數(shù)組成,集合的元素個(gè)數(shù).對(duì)于任意,數(shù)中至少有一個(gè)屬于,稱(chēng)集合好集”:否則,稱(chēng)集合壞集”.

1)判斷好集”,還是壞集;

2)題設(shè)的有限集合,既有大于1的元素,又有小于1的元素,證明:集合壞集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線(xiàn)方程為,點(diǎn)N在圓上,則的最小值為( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:

①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;

②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的;

③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)住(居。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.

則上述說(shuō)法中,正確的個(gè)數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:

①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;

②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的

③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.

則上述說(shuō)法中,正確的個(gè)數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直平行六面體的所有棱長(zhǎng)都為2,,過(guò)體對(duì)角線(xiàn)的截面S與棱分別交于點(diǎn)E、F,給出下列命題中:

①四邊形的面積最小值為;

②直線(xiàn)EF與平面所成角的最大值為

③四棱錐的體積為定值;

④點(diǎn)到截面S的距離的最小值為.

其中,所有真命題的序號(hào)為(

A.①②③B.①③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶(hù)居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計(jì)

捐款超過(guò)500元

30

捐款低于500元

6

合計(jì)

(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶(hù)居民捐款情況如上表,在表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺(tái)風(fēng)造成了小區(qū)多戶(hù)居民門(mén)窗損壞,若小區(qū)所有居民的門(mén)窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來(lái)到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來(lái)到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】產(chǎn)能利用率是指實(shí)際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營(yíng)狀況的重要指標(biāo).下圖為國(guó)家統(tǒng)計(jì)局發(fā)布的2015年至2018年第2季度我國(guó)工業(yè)產(chǎn)能利用率的折線(xiàn)圖.

在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.

據(jù)上述信息,下列結(jié)論中正確的是( ).

A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高

C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高

查看答案和解析>>

同步練習(xí)冊(cè)答案