解答:
解:(Ⅰ)∵函數(shù)f(x)=ln(x+a)+
,(a>0),
∴當(dāng)a=1時,f(x)=ln(x+1)+
,(x>-1),
∴f′(x)=
+=
.
∴當(dāng)x∈(-1,0)時,f′(x)<0,當(dāng)x∈(0,+∞)時,f′(x)>0,
∴y=f(x)在(-1,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
∴[f(x)]
min=f(0)=0.
(Ⅱ)∵函數(shù)f(x)=ln(x+a)+
,(a>0),
∴f′(x)=
+
=
,
∴當(dāng)x∈
(-a,-a+)時,f′(x)<0;當(dāng)x∈
(-a+,+∞)時,f′(x)>0;
∴函數(shù)f(x)在
(-a,-a+)上單調(diào)遞減,在
(-a+,+∞)上單調(diào)遞增,
∴[f(x)]
min=f(-a+
)=ln
+1-
.
∵y=f(x)有兩個零點,
∴l(xiāng)n
+1-
<0,
令h(a)=ln
+1-
.
h′(a)=-=
,
∴當(dāng)a∈(0,1)時,h′(x)>0;當(dāng)a∈(1,+∞)時,h′(x)<0,
∴函數(shù)h(a)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
∵h(yuǎn)(1)=0,
∴a∈(0,1)時,h(a)<0;當(dāng)a∈(1,+∞)時,h(a)<0,
∴a∈(0,1)∪(1,+∞).
(Ⅲ)當(dāng)a=1時,由(Ⅰ)知:方程f(x)-k=0必在兩個異號實根x
1,x
2,且x
1<0<x
2,
∴f(x
1)-k=0,f(x
2)-k=0,
當(dāng)x∈(-1,0)時,設(shè)g(x)=[f(x)-k]-[f(-x)-k]=ln(x+1)+
-ln(-x+1)-
,
∴g′(x)=
-
=
≤0,
∴當(dāng)x∈(-1,0)時,y=g(x)為減函數(shù),
∵g(0)=0,
∴當(dāng)x∈(-1,0)時,g(x)>0,
∵-1<x
1<0,
∴g(x
1)>0,
∴[f(x
1)-k]-[f(x
2)-k]>0,
∴[f(x
1)-k]<[f(x
2)-k],
∴f(-x
1)<f(x
2),
∵-x
1∈(0,1),x
2∈(0,+∞),y=g(x)在(0,+∞)為增函數(shù);
∵-x
1<x
2,
∴x
2+x
1>0.