【題目】某工廠C發(fā)生爆炸出現(xiàn)毒氣泄漏,已知毒氣以圓形向外擴(kuò)散,且半徑以每分鐘的速度增大. 一所學(xué)校A,位于工廠C南偏西,且與工廠相距.消防站B位于學(xué)校A的正東方向,且位于工廠C南偏東,立即以每分鐘的速度沿直線趕往工廠C救援,同時(shí)學(xué)校組織學(xué)生PA處沿著南偏東的道路,以每分鐘的速度進(jìn)行安全疏散(與爆炸的時(shí)間差忽略不計(jì)).要想在消防員趕往工廠的時(shí)間內(nèi)(包括消防員到達(dá)工廠的時(shí)刻),保證學(xué)生的安全,學(xué)生撤離的速度應(yīng)滿足什么要求?

【答案】學(xué)生撤離的速度至少要是每分鐘

【解析】

因?yàn)榘踩冯x,所以上恒成立,設(shè)學(xué)生速度為,故恒成立,討論的范圍,計(jì)算得到答案.

因?yàn)榘踩冯x,所以上恒成立,設(shè)學(xué)生速度為,

上恒成立,

所以

1°時(shí),上恒成立,所以符合題意;

2°時(shí),的最小值只可能在端點(diǎn)處取得,所以只要

解得,舍去;

3°時(shí),

1)當(dāng)時(shí),的最小值為,得,所以;

2)當(dāng)時(shí),,因?yàn)?/span>,

所以.

綜上,即學(xué)生撤離的速度至少要是每分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時(shí),若恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x[0,1]時(shí),下列關(guān)于函數(shù)y=的圖象與的圖象交點(diǎn)個(gè)數(shù)說法正確的是( 。

A. 當(dāng)時(shí),有兩個(gè)交點(diǎn)B. 當(dāng)時(shí),沒有交點(diǎn)

C. 當(dāng)時(shí),有且只有一個(gè)交點(diǎn)D. 當(dāng)時(shí),有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知橢圓:()的離心率為,右準(zhǔn)線方程是直線l,點(diǎn)P為直線l上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作橢圓的兩條切線,切點(diǎn)分別為AB(點(diǎn)Ax軸上方,點(diǎn)Bx軸下方).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)①求證:分別以為直徑的兩圓都恒過定點(diǎn)C

②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是

圖1 圖2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的過程中,平面恒成立

D.在翻折的過程中,平面恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為2的正方體中,的中點(diǎn)是P,過點(diǎn)作與截面平行的截面,則截面的面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A.84B.56C.35D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,等邊三角形所在的平面垂直于底面,, 是棱的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)判斷直線與平面的是否平行,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案