在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)設(shè)
m
=(sinA,1),
n
=(-1,1)
,求
m
n
的最小值.
(I)由正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,有a=2RsinA,b=2RsinB,c=2RsinC,
代入(2a-c)cosB=bcosC,得(2sinA-sinC)cosB=sinBcosC,
即2sinAcosB=sinBcosC+sinCcosB=sin(B+C),
∵A+B+C=π,∴2sinAcosB=sinA,
∵0<A<π,∴sinA≠0,
∴cosB=
1
2
,
∵0<B<π,∴B=
π
3

(II)∵
m
=(sinA,1),
n
=(-1,1),
m
n
=-sinA+1,
由B=
π
3
得:A∈(0,
3
),
則當(dāng)A=
π
2
時,
m
n
取得最小值0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案