【題目】已知單調遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,Sn=b1+b2+…+bn,對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)將已知條件轉化為等比數(shù)列的基本量來表示,通過解方程組得到其值,從而確定通項公式;(2)將數(shù)列{an}的通項公式代入可求得,根據(jù)特點采用錯位相減法求得前n項和,代入不等式Sn+(n+m)an+1<0,通過分離參數(shù)的方法求得m的取值范圍
試題解析:(1)設等比數(shù)列的首項為,公比為,依題意,有,代入
可得,解得或,又數(shù)列單調遞增,數(shù)列的通項公式為
(2)∵bn=2n·=-n·2n,
∴-Sn=1×2+2×22+3×23+…+n×2n,①
-2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1.②
①-②,得Sn=2+22+23+…+2n-n·2n+1=-n·2n+1=2n+1-n·2n+1-2.
∵Sn+(n+m)an+1<0,∴2n+1-n·2n+1-2+n·2n+1+m·2n+1<0對任意正整數(shù)n恒成立.
∴m·2n+1<2-2n+1對任意正整數(shù)n恒成立,即m<-1恒成立.
∵-1>-1,∴m≤-1,即m的取值范圍是(-∞,-1].
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△內接于圓,是圓的直徑,四邊形為平行四邊形,平面,.
(1)求證:⊥平面;
(2)設,表示三棱錐的體積,求函數(shù)的解析式及最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請按字母F、G、H標記在正方體相應地頂點處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關系.并說明你的結論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1-200編號,并按編號順序平均分為40組(1-5號,6-10號…,196-200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是 。若用分層抽樣方法,則40歲以下年齡段應抽取 人.
圖 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=1g(1﹣x)的值域為(﹣∞,0),則函數(shù)f(x)的定義域為( )
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務員參加植樹活動,林業(yè)部門在植樹前,為了保證樹苗的質量,將在植樹前對樹苗進行檢測,現(xiàn)從同一種樹的甲、乙兩批樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.
(1)你能用適當?shù)慕y(tǒng)計圖表示上面的數(shù)據(jù)嗎?
(2)根據(jù)你所畫的統(tǒng)計圖,對甲,乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,底面是邊長為的菱形, ,四邊形是矩形,平面平面, , 是的中點.
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)的圖象在點處的切線的傾斜角為45°,對于任意的,函數(shù)在區(qū)間上總不是單調函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com