【題目】已知動圓過定點,且與定直線相切.

(1)求動圓圓心的軌跡的方程;

(2)若是軌跡的動弦,且 分別以、為切點作軌跡的切線,設兩切線交點為,證明:.

【答案】(1)(2)詳見解析

【解析】

試題(I)由題意可得:動圓圓心到定點(0,2)與到定直線y=-2的距離相等,利用拋物線的定義求軌跡方程即可;(II)設AB:y=kx+2,將直線的方程代入拋物線的方程,消去y得到關于x的一元二次方程,再結合根與系數(shù)的關系利用切線的幾何意義即可求得過拋物線上A、B兩點的切線斜率關系,從而解決問題

試題解析:(1)依題意,圓心的軌跡是以為焦點,為準線的拋物線

因為拋物線焦點到準線距離等于4, 所以圓心的軌跡方程是

(2)

,

拋物線方程為 所以過拋物線上A、B兩點的切線斜率分別是

,.

所以,

(注:也可設,再由,設

則直線AQ:,聯(lián)立直線和拋物線方程,由直線和拋物線相切得

可得,同理可得,從而證

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,橢圓C的左、右焦點分別為,,右頂點為A,上頂點為B,若,成等比數(shù)列,橢圓C上的點到焦點的距離的最大值為

求橢圓C的標準方程;

過該橢圓的右焦點作傾角為的直線與橢圓交于M,N兩點,求的內切圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校為調查學生喜歡應用統(tǒng)計課程是否與性別有關,隨機抽取了選修課程的55名學生,得到數(shù)據如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

男生

20

5

女生

10

20

臨界值參考:

0.10

0.05

0.25

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

參照附表,得到的正確結論是(

A.在犯錯誤的概率不超過的前提下,認為“喜歡應用統(tǒng)計課程與性別有關”

B.在犯錯誤的概率不超過的前提下,認為“喜歡應用統(tǒng)計課程與性別無關”

C.以上的把握認為“喜歡應用統(tǒng)計課程與性別有關”

D.以上的把握認為“喜歡應用統(tǒng)計課程與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;

②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,過點的直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.

(1)若點的直角坐標為,求直線及曲線的直角坐標方程;

(2)若點上,直線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國清朝數(shù)學家李善蘭在1859年翻譯《代數(shù)學》中首次將譯做:函數(shù),沿用至今,為什么這么翻譯,書中解釋說凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”1930年美國人給出了我們課本中所學的集合論的函數(shù)定義,已知集合,給出下列四個對應法則,請由函數(shù)定義判斷,其中能構成從的函數(shù)的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知過原點O的直線與函數(shù)的圖象交于AB兩點,分別過ABy軸的平行線與函數(shù)圖象交于C,D兩點,若軸,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間直角坐標系中,已知正四棱錐的高,點分別在軸和軸上,且,點是棱的中點.

(1)求直線與平面所成角的正弦值;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.對具有線性相關關系的變量有一組觀測數(shù)據,其線性回歸方程是,且,則實數(shù)的值是

B.正態(tài)分布在區(qū)間上取值的概率相等

C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1

D.若一組數(shù)據的平均數(shù)是2,則這組數(shù)據的眾數(shù)和中位數(shù)都是2

查看答案和解析>>

同步練習冊答案