對于定義域為[0,1]的函數(shù)f(x)如果滿足以下三個條件:①對任意的x∈[0,1],總有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-2成立.則稱函數(shù)f(x)為理想函數(shù).
(1)判斷函數(shù)g(x)=2x+1 (0≤x≤1)是否為理想函數(shù),并予以證明;
(2)求定義域為[0,1]的理想函數(shù)f(x)的最大值和最小值;
(3)某同學(xué)發(fā)現(xiàn):當(dāng)x=(n∈N)時,有f()≤+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你根據(jù)該同學(xué)發(fā)現(xiàn)的結(jié)論(或其它方法)來判斷此猜想是否正確,并說明理由.
【答案】分析:(1)欲判斷g(x)=2x+1 (0≤x≤1)是不是滿足理想函數(shù),即看它是否滿足①x∈[0,1],f(x)≥2;②f(1)=3;下面一一驗證即可;
(2)先研究函數(shù)f(x)的單調(diào)性,從而得出此函數(shù)的最值.得到當(dāng)x=0時,f(x)取得最小值2,當(dāng)x=1時,f(x)取得最大值3即可;(3)由于對x∈(0,1],總存在n∈N,<x≤,再加上由(2)及該同學(xué)的結(jié)論,得f(x)≤f()≤+2,又2x+2>2•+2=+2,最后利用放縮法即得.
解答:解:(1)顯然g(x)=2x+1 (0≤x≤1)滿足①x∈[0,1],f(x)≥2;②f(1)=3;
若x1≥0,x2≥0,x1+x2≤1,則g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-2x1-2x2-1=(2x1-1)(2x2-1)-2≥-2
即g(x1+x2)≥g(x1)+g(x2)-2成立,故為理想函數(shù).(4分)
(2)設(shè)x1,x2∈[0,1],x1<x2,則x2-x1∈(0,1]
∴f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2
∴f(x2)-f(x1)≥f (x2-x1)-2≥0,∴f(x1)≤f(x2
則當(dāng)0≤x≤1時,f(0)≤f(x)≤f(1),
在③中,令x1=x2=0,得f(0)≤2,由②得f(0)≥2,
∴f(0)=2當(dāng)x=1時,f(1)=3,
∴當(dāng)x=0時,f(x)取得最小值2,
當(dāng)x=1時,f(x)取得最大值3(10分)
(3)對x∈(0,1],總存在n∈N,<x≤,
由(2)及該同學(xué)的結(jié)論,得f(x)≤f()≤+2,
又2x+2>2•+2=+2,
∴f(x)<2x+2
綜上所述,對一切x∈(0,1],都有f(x)<2x+2(16分)
點評:本小題主要考查函數(shù)模型的選擇與應(yīng)用、抽象函數(shù)的應(yīng)用、放縮法等,考查運(yùn)算求解能力,化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)若函數(shù)f(x)為理想函數(shù),求f(0)的值;
(2)判斷函數(shù)g(x)=2x-1(x∈[0,1])是否為理想函數(shù),并予以證明;
(3)若函數(shù)f(x)為理想函數(shù),假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x)如果滿足以下三個條件:①對任意的x∈[0,1],總有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-2成立.則稱函數(shù)f(x)為理想函數(shù).
(1)判斷函數(shù)g(x)=2x+1 (0≤x≤1)是否為理想函數(shù),并予以證明;
(2)求定義域為[0,1]的理想函數(shù)f(x)的最大值和最小值;
(3)某同學(xué)發(fā)現(xiàn):當(dāng)x=
1
2n
(n∈N)時,有f(
1
2n
)≤
1
2n
+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你根據(jù)該同學(xué)發(fā)現(xiàn)的結(jié)論(或其它方法)來判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x),若同時滿足以下三個條件:
①f(1)=1; 
②?x∈[0,1],總有f(x)≥0; 
③當(dāng)x1≥0,x2≥0,x1+x2≤1時,都有f(x1+x2)≥f(x1)+f(x2),則稱函數(shù)f(x)為理想函數(shù).
(Ⅰ)若函數(shù)f(x)為理想函數(shù),求f(0).
(Ⅱ)判斷函數(shù)g(x)=2x-1(x∈[0,1])和函數(shù)h(x)=sin
π2
x
(x∈[0,1])是否為理想函數(shù)?若是,予以證明;若不是,說明理由.
(III)設(shè)函數(shù)f(x)為理想函數(shù),若?x0∈[0,1],使f(x0)∈[0,1],且f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域為[0,1]的函數(shù)f(x)同時滿足:(1)對于任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)若x1≥0,x2≥0,則f(x1+x2)≥f(x1)+f(x2).
(Ⅰ)求f(0)的值;
(Ⅱ)問函數(shù)g(x)=f(x)-2x-
1
10
在[
1
2
,1]上是否有零點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于定義域為[0,1]的函數(shù)f(x),如果同時滿足以下三條:①對任意的x∈[0,1],總有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,則稱函數(shù)f(x)為理想函數(shù).
(1)若函數(shù)f(x)為理想函數(shù),求f(0)的值;
(2)判斷函數(shù)g(x)=2x-1(x∈[0,1])是否為理想函數(shù),并予以證明;
(3)若函數(shù)f(x)為理想函數(shù),假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證f(x0)=x0

查看答案和解析>>

同步練習(xí)冊答案