11.現(xiàn)有4種不同的顏色為“嚴勤活實”四個字涂顏色,要求相鄰的兩個字涂色不同,則不同的涂色種數(shù)為(  )
A.27B.54C.108D.144

分析 首先給最左邊一個字涂色,有4種結(jié)果,再給左邊第二個字涂色有3種結(jié)果,以此類推第三個字也有3種結(jié)果,第四個字也有3種結(jié)果,根據(jù)分步計數(shù)原理得到結(jié)果.

解答 解:由題意知本題是一個分步計數(shù)問題,
首先給最左邊一個字涂色,有4種結(jié)果,
再給左邊第二個字涂色有3種結(jié)果,
以此類推第三個字有3種結(jié)果,第四個字有3種結(jié)果,
∴根據(jù)分步計數(shù)原理知共有4×3×3×3=108.
故選C.

點評 本題考查計數(shù)原理的應用,本題解題的關(guān)鍵是看清條件中對于涂色的限制,因此在涂第二個字時,要不和第一個字同色,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項和.設Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4與2a7的等差中項為$\frac{5}{4}$,則T6=160.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求值;
(1)sin(-1 200°)cos 1 290°+cos(-1 020°)•sin(-1 050°)
(2)設$f(α)=\frac{2sin(π+α)cos(3π-α)+cos(4π-α)}{{1+{{sin}^2}α+cos(\frac{3π}{2}+α)-{{sin}^2}(\frac{π}{2}+α)}}(1+2{sin^2}α≠0)$,求$f(-\frac{23π}{6})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.橢圓E:$\frac{x^2}{4}+\frac{y^2}{3}=1$的右頂點為B,過E的右焦點作斜率為1的直線L與E交于M,N兩點,則△MBN的面積為$\frac{6\sqrt{2}}{7}$,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知A、B為拋物線y2=2px(p>0)上不同的兩個動點(A、B都不與原點重合),且OA⊥OB,OM⊥AB于M.
(Ⅰ)當點M的軌跡經(jīng)過點(2,1)時,求p的值;
(Ⅱ)在(Ⅰ)的條件下,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.從2013名學生中選取50名學生參加數(shù)學競賽,若采用下面的方法選。合扔煤唵坞S機抽樣從2013人中剔除13人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2013人中,每人入選的機會( 。
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{40}$D.都相等,且為 $\frac{50}{2013}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如果橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1的一條弦被點(4,2)平分,則該弦所在的直線方程是( 。
A.x-2y=0B.2x-3y-2=0C.x+2y-8=0D.x-2y-8=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知tanα=2,計算:
(1)$\frac{sin(α-3π)+cos(π+α)}{sin(-α)-cos(π+α)}$;
(2)cos2α-2sinαcosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,若S2017=4034,則a3+a1009+a2015=( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案