【題目】已知函數(shù),.
(1)若直線是曲線的一條切線,求k的值;
(2)當(dāng)時,直線與曲線無交點(diǎn),求整數(shù)k的最大值.
【答案】(1)2;(2)3.
【解析】
(1)先求函數(shù)的導(dǎo)數(shù),設(shè)出切點(diǎn)坐標(biāo),根據(jù)切線方程建立等量關(guān)系,求出切點(diǎn)坐標(biāo),從而可得k的值;
(2)把交點(diǎn)問題轉(zhuǎn)化為函數(shù)的零點(diǎn)問題,結(jié)合導(dǎo)數(shù),求解單調(diào)性及最值,然后可得整數(shù)k的最大值.
(1)由題意知,設(shè)切點(diǎn)為,
在點(diǎn)P處的切線方程為.
整理得.
由.
令,.
當(dāng),,在上單調(diào)遞增;當(dāng),,在上單調(diào)遞減.
所以的最大值為,即,故.
(2)令,
①當(dāng)時,,所以在上單調(diào)遞增.
所以,即在上無零點(diǎn).
②當(dāng)時,由,得.
當(dāng)時,,所以在上單調(diào)遞減;
當(dāng)時,,所以在上單調(diào)遞增.
的最小值為.
令,則,
所以在上單調(diào)遞減,
而,,,因此k的最大值為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:當(dāng)時,對任意恒成立;
(2)求函數(shù)的極值;
(3)當(dāng)時,若存在且,滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過F的直線交拋物線C于,兩點(diǎn).
(Ⅰ)當(dāng)時,求的值;
(Ⅱ)過點(diǎn)A作拋物線準(zhǔn)線的垂線,垂足為E,過點(diǎn)B作EF的垂線,交拋物線于另一點(diǎn)D,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王于2015年底貸款購置了一套房子,根據(jù)家庭收入情況,小王選擇了10年期每月還款數(shù)額相同的還貸方式,且截止2019年底,他沒有再購買第二套房子.下圖是2016年和2019年小王的家庭收入用于各項支出的比例分配圖,根據(jù)以上信息,判斷下列結(jié)論中正確的是( )
A.小王一家2019年用于飲食的支出費(fèi)用跟2016年相同
B.小王一家2019年用于其他方面的支出費(fèi)用是2016年的3倍
C.小王一家2019年的家庭收入比2016年增加了1倍
D.小王一家2019年用于房貸的支出費(fèi)用比2016年減少了
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓的方程為.以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求與的交點(diǎn)的極坐標(biāo);
(2)設(shè)是的一條直徑,且不在軸上,直線交于兩點(diǎn),直線交于兩點(diǎn),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球運(yùn)動被譽(yù)為“世界第一運(yùn)動”.為推廣足球運(yùn)動,某學(xué)校成立了足球社團(tuán)由于報名人數(shù)較多,需對報名者進(jìn)行“點(diǎn)球測試”來決定是否錄取,規(guī)則如下:
(1)下表是某同學(xué)6次的訓(xùn)練數(shù)據(jù),以這150個點(diǎn)球中的進(jìn)球頻率代表其單次點(diǎn)球踢進(jìn)的概率.為加入足球社團(tuán),該同學(xué)進(jìn)行了“點(diǎn)球測試”,每次點(diǎn)球是否踢進(jìn)相互獨(dú)立,將他在測試中所踢的點(diǎn)球次數(shù)記為,求;
(2)社團(tuán)中的甲、乙、丙三名成員將進(jìn)行傳球訓(xùn)練,從甲開始隨機(jī)地將球傳給其他兩人中的任意一人,接球者再隨機(jī)地將球傳給其他兩人中的任意一人,如此不停地傳下去,且假定每次傳球都能被接到.記開始傳球的人為第1次觸球者,接到第n次傳球的人即為第次觸球者,第n次觸球者是甲的概率記為.
(i)求,,(直接寫出結(jié)果即可);
(ii)證明:數(shù)列為等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓經(jīng)過,且右焦點(diǎn)坐標(biāo)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B為橢圓的左,右頂點(diǎn),C為橢圓的上頂點(diǎn),P為橢圓上任意一點(diǎn)(異于A,B兩點(diǎn)),直線AC與直線BP相交于點(diǎn)M,直線BC與直線AP相交于點(diǎn)N,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:上一點(diǎn),以點(diǎn)及橢圓的左、右焦點(diǎn),為頂點(diǎn)的三角形面積為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過作斜率存在且互相垂直的直線,,是與兩交點(diǎn)的中點(diǎn),是與兩交點(diǎn)的中點(diǎn),求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c均為正數(shù),設(shè)函數(shù)f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函數(shù)f(x)的最大值為1,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com