若原點(diǎn)到直線的距離等于的半焦距的最小值為             (   )
A.2B.3C.5D.6
D
本題考查距離公式及雙曲線的性質(zhì).
若原點(diǎn)到直線的距離為,則
整理得
由雙曲線的定義知,,由均值定理得

即有

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171441018607.png" style="vertical-align:middle;" />所以
即有
由雙曲線的定義
所以
故正確答案為D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
⑴求橢圓的方程.
⑵設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,且的面積為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn)F(1,0),直線,設(shè)動(dòng)點(diǎn)P到直線的距離為,已知,且
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若,求向量的夾角;
(3)如圖所示,若點(diǎn)G滿足,點(diǎn)M滿足,且線段MG的垂直平分線經(jīng)過(guò)點(diǎn)P,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知點(diǎn),動(dòng)點(diǎn)、分別在、軸上運(yùn)動(dòng),滿足為動(dòng)點(diǎn),并且滿足
(1)求點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)的直線(不與軸垂直)與曲線交于兩點(diǎn),設(shè)點(diǎn),的夾角為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一圓形紙片的圓心為O,點(diǎn)Q是圓內(nèi)異于O點(diǎn)的一個(gè)定點(diǎn),點(diǎn)A是圓周上一動(dòng)點(diǎn),把紙片折疊使得點(diǎn)A與點(diǎn)Q重合,然后抹平紙片,折痕CD與OA交于點(diǎn)P,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡為()
A 橢圓             B 雙曲線          C 拋物線        D 圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)如圖,求由兩條曲線y=-x2,4y=-x2
及直線y=-1所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


已知曲線上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小
(1)求曲線的方程;
(2)動(dòng)點(diǎn)在直線上,過(guò)點(diǎn)分別作曲線的切線,切點(diǎn)為、
(ⅰ)求證:直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線上是否存在一點(diǎn),使得為等邊三角形(點(diǎn)也在直線上)?若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線方程為
                   

查看答案和解析>>

同步練習(xí)冊(cè)答案