【題目】自從高中生通過高校自主招生可獲得加分進(jìn)入高校的政策出臺后,自主招生越來越受到高中生家長的重視.某機(jī)構(gòu)為了調(diào)查城市和城市的高中家長對于自主招生的關(guān)注程度,在這兩個城市中抽取了名高中生家長進(jìn)行了調(diào)查,得到下表:

關(guān)注

不關(guān)注

合計

城高中家長

20

50

城高中家長

20

合計

100

1)完成上面的列聯(lián)表;

2)根據(jù)上面列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為家長對自主招生關(guān)注與否與所處城市有關(guān);

3)為了進(jìn)一步研究家長對自主招生的直法,該機(jī)構(gòu)從關(guān)注的學(xué)生家長里面,按照分層抽樣方法抽取了人,并再從這人里面抽取人進(jìn)行采訪,求所抽取的人恰好兩城市各一人的概率.

附:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1)詳見解析;(2)有的把握認(rèn)為家長對自主招生的關(guān)注與否與所處城市有關(guān);(30.6.

【解析】

1)根據(jù)相關(guān)數(shù)據(jù)完成.

2)根據(jù)的觀測值的計算公式求解,再對應(yīng)下結(jié)論.,

3)關(guān)注的人共有人,根據(jù)分層抽樣的方法,城市人,城市人,算出從人抽取兩的方法數(shù),兩城市各取一人的方法數(shù),再代入古典概型的概率公式求解.

1

關(guān)注

不關(guān)注

合計

城高中家長

20

30

50

城高中家長

30

20

50

合計

50

50

100

2)由題意,得的觀測值為,

所以有的把握認(rèn)為家長對自主招生的關(guān)注與否與所處城市有關(guān).

3)關(guān)注的人共有人,按照分層抽樣的方法,城市人,城市.

人抽取兩人有種不同的方法,

兩城市各取一人有種不同的方法,

故所抽取的人恰好兩城市各一人的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為為參數(shù),為常數(shù),且.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.設(shè)點(diǎn)在圓外.

1)求的取值范圍.

2)設(shè)直線與圓相交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,恰為等比數(shù)列的前3項.

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;

3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn,且an2+2an4Sn1nN*).

1)求數(shù)列{an}的通項公式;

2)若bn,數(shù)列{bn}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線),其上一點(diǎn)的焦點(diǎn)的距離為4.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點(diǎn)的直線與拋物線分別交于,兩點(diǎn)(點(diǎn)均在軸的上方),若的面積為4,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高二年級學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(均為整數(shù))分成六段: , ,…后得到如下頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計該校高二年級學(xué)生期中考試政治成績的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)

(2)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別為橢圓的焦點(diǎn),直線軸交于點(diǎn),若,且.

1)求橢圓的方程;

2)過,作互相垂直的兩直線分別與橢圓交于,,,四點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每年的寒冷天氣都會帶熱御寒經(jīng)濟(jì),以交通業(yè)為例,當(dāng)天氣太冷時,不少人都會選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);

日平均氣溫(℃)

6

4

2

網(wǎng)上預(yù)約訂單數(shù)

100

135

150

185

210

1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);

2)天氣預(yù)報未來5天有3天日平均氣溫不高于,若把這5天的預(yù)測數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.

附:回歸直線的斜率和截距的最小二乘法估計分別為:

查看答案和解析>>

同步練習(xí)冊答案