根據(jù)市場調(diào)查結(jié)果,預(yù)測某種家用商品從年初開始的n個月內(nèi)累積的需求量Sn(萬件)近似地滿足關(guān)系式Sn= (21n-n2-5)(n=1,2,3,…,12),按此預(yù)測,在本年度內(nèi),需求量超過1.5萬件的月份是_________.

解析:∵n個月累積的需求量為Sn,

∴第n個月的需要量為

an=Sn-Sn-1=(21n-n2-5)[21(n-1)-(n-1)2-5]=(-n2+15n-9).

令an>1.5,可解得6<n<9(n=1,2,…,12).

∴n=7,或n=8.

答案:7、8月

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某化工企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品.根據(jù)市場調(diào)查與預(yù)測,甲產(chǎn)品的利潤與投資成正比,其關(guān)系如圖(1)所示;乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示.
(Ⅰ)分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ)設(shè)該企業(yè)準(zhǔn)備投資100萬元資金,并全部投入甲、乙兩種產(chǎn)品的生產(chǎn).怎樣分配這100萬元資金,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?(精確到1萬元)
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的月利潤y=f(x)與投資額x成正比,且投資4萬元時,月利潤為2萬元;B產(chǎn)品的月利潤y=g(x)與投資額x的算術(shù)平方根成正比,且投資4萬元時,月利潤為1萬元.(允許僅投資1種產(chǎn)品)
(1)分別求出A、B兩種產(chǎn)品的月利潤表示為投資額x的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大的月利潤,最大月利潤是多少?(結(jié)果用分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的月利潤y=f(x)與投資額x成正比,且投資4萬元時,月利潤為2萬元;B產(chǎn)品的月利潤y=g(x)與投資額x的算術(shù)平方根成正比,且投資4萬元時,月利潤為1萬元.(允許僅投資1種產(chǎn)品)
(1)分別求出A、B兩種產(chǎn)品的月利潤表示為投資額x的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大的月利潤,最大月利潤是多少?(結(jié)果用分數(shù)表示)
(3)在(2)的條件下,能否保證企業(yè)總能獲得2萬元以上的月利潤,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)市場調(diào)查結(jié)果,預(yù)測某種家用商品從年初開始的n個月內(nèi)累積的需求量Sn(萬件)近似地滿足Sn=(21n-n2-5)(n=1,2,…,12),按此預(yù)測,在本年度內(nèi),需求量超過1.5萬件的月份是(    )

A.5月,6月            B.6月,7月            C.7月,8月            D.8月,9月

查看答案和解析>>

同步練習(xí)冊答案