【題目】已知數(shù)列的前項(xiàng)和為.

1求數(shù)列的通項(xiàng)公式;

2設(shè),記數(shù)列的前項(xiàng)和.若對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;2

【解析】

試題分析:1關(guān)于項(xiàng)的遞推式,往往有兩種解決方法,其一是轉(zhuǎn)化為的遞推式,先求再求;其二是轉(zhuǎn)化為的遞推式再求,其中 轉(zhuǎn)化橋梁,本題將已知條件轉(zhuǎn)化為,得數(shù)列為以2為公比的等比數(shù)列,進(jìn)而求數(shù)列的通項(xiàng)公式;2首先求得,通過(guò)分析其結(jié)構(gòu),利用裂項(xiàng)相消法求和得,帶入中轉(zhuǎn)化為恒成立問(wèn)題求解.

試題解析:1當(dāng)時(shí),,當(dāng)時(shí),

即:,數(shù)列為以2為公比的等比數(shù)列

2由bn=log2an得bn=log22n=n,則cn,

Tn=1- =1-.

≤kn+4k≥

n++5≥2+5=9,當(dāng)且僅當(dāng)n=,即n=2時(shí)等號(hào)成立,

,因此k≥,故實(shí)數(shù)k的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是一個(gè)等差數(shù)列且a2+a8=﹣4,a6=2

1)求{an}的通項(xiàng)公式;

2)求{an}的前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數(shù)fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時(shí)的b的取值范圍;
(3)判斷是否存在大于1的實(shí)數(shù)a,使得對(duì)任意x1∈[a,2a],都有x2∈[a,a2]滿足等式:g(x1)+g(x2)=p,且滿足該等式的常數(shù)p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為A,右焦點(diǎn)為F,過(guò)點(diǎn)F的直線交橢圓于B,C兩點(diǎn).

(1)求該橢圓的離心率;

(2)設(shè)直線ABAC分別與直線x=4交于點(diǎn)MN,問(wèn):x軸上是否存在定點(diǎn)P使得MPNP?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用神七宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品、,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用、和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排.通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如下表:


產(chǎn)品A()

產(chǎn)品B()


研制成本、搭載費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60


如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績(jī)統(tǒng)計(jì)情況如莖葉圖所示(其中09的某個(gè)整數(shù))

1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績(jī)穩(wěn)定性角度考慮,你認(rèn)為誰(shuí)去比較合適?

2)若從甲的成績(jī)中任取兩次成績(jī)作進(jìn)一步分析,在抽取的兩次成績(jī)中,求至少有一次成績(jī)?cè)冢?/span>90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù). 

(Ⅰ)若,證明:函數(shù)上的減函數(shù);

(Ⅱ)若曲線在點(diǎn)處的切線與直線平行,求的值;

(Ⅲ)若,證明: (其中…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓與雙曲線有相同的焦點(diǎn),橢圓的一個(gè)短軸端點(diǎn)為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過(guò)層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問(wèn)題中隨機(jī)抽取個(gè)問(wèn)題,已知這個(gè)招標(biāo)問(wèn)題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對(duì)每題的回答都是相互獨(dú)立,互不影響的.

(1)求甲、乙兩家公司共答對(duì)道題目的概率;

(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?

查看答案和解析>>

同步練習(xí)冊(cè)答案