已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長(zhǎng),求原點(diǎn)O到直線l的距離的最大值;
(2)若圓B平分圓A的周長(zhǎng),圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.
(1)     (2)(x-)2+(y-)2
(1)圓A的方程即(x-1)2+(y-1)2=4,其圓心為A(1,1),半徑為r=2.
由題意知直線l經(jīng)過圓心A(1,1),所以a+b-4=0,得b=4-a.
原點(diǎn)O到直線l的距離d=.
因?yàn)閍2+b2=a2+(4-a)2=2(a-2)2+8,所以當(dāng)a=2時(shí),a2+b2取得最小值8.
故d的最大值為.

(2)由題意知圓B與圓A的相交弦為圓A的一條直徑,它經(jīng)過圓心A.
設(shè)圓B的圓心為B(a,2a),半徑為R.如圖所示,在圓B中,
由垂徑定理并結(jié)合圖形可得:R2=22+|AB|2=4+(a-1)2+(2a-1)2=5(a-)2.
所以當(dāng)a=時(shí),R2取得最小值.
故符合條件且半徑最小的圓B的方程為(x-)2+(y-)2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點(diǎn)A(-2,3),B(3,2),若直線ax+y+2=0與線段AB沒有交點(diǎn),則a的取值范圍是(  )
A.(-∞,-
5
2
]∪[
4
3
,+∞)
B.(-
4
3
,
5
2
C.[-
5
2
,
4
3
]
D.(-∞,-
4
3
]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與直線相交于兩點(diǎn),圓心為,若,則的值為(   )
A.8B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過原點(diǎn)且傾斜角為的直線被圓學(xué)所截得的弦長(zhǎng)為(科網(wǎng)    )
A.2B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線x-y+m=0與圓x2+y2-2x-1=0有兩個(gè)不同的交點(diǎn)的一個(gè)充分不必要條件為(  ).
A.m<1B.-3<m<1C.-4<m<2D.0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓C:x2+y2+2x-4y+3=0關(guān)于直線2ax+by+6=0對(duì)稱,則由點(diǎn)M(a,b)向圓所作的切線長(zhǎng)的最小值是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線過圓的圓心,且與直線垂直,則的方程是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A,E是半圓周上的兩個(gè)三等分點(diǎn),直徑BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長(zhǎng)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是圓的直徑,點(diǎn)在圓上,延長(zhǎng)使,過作圓的切線交. 若,,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案