已知函數(shù),其中為常數(shù).
(1)求函數(shù)的周期;
(2)如果的最小值為,求的值,并求此時(shí)的最大值及圖像的對稱軸方程.
(1),(2),最大值等于4,

試題分析:(1)研究三角函數(shù)性質(zhì),首先將其化為基本三角函數(shù),即化為形如:,由倍角公式,降冪公式及配角公式得:,然后利用基本三角函數(shù)性質(zhì)進(jìn)行求解,即(2)由的最小值為,得,因此最大值為對稱軸方程滿足: ,即:.
試題解析:解(1).    4分
.        6分
(2)的最小值為,所以  故    8分
所以函數(shù).最大值等于4        10分
,即時(shí)函數(shù)有最大值或最小值,
故函數(shù)的圖象的對稱軸方程為.      14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值及取最大值時(shí)x的取值集合;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044047431315.png" style="vertical-align:middle;" />,若對于任意、,當(dāng)時(shí),恒有
,則稱點(diǎn)為函數(shù)圖像的對稱中心.研究函數(shù)的某一個(gè)對稱中心,并利用對稱中心的上述定義,可得到
的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),,有下列命題:
①當(dāng)時(shí),函數(shù)是最小正周期為的偶函數(shù);
②當(dāng)時(shí),的最大值為
③當(dāng)時(shí),將函數(shù)的圖象向左平移可以得到函數(shù)的圖象.
其中正確命題的序號是              (把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

要得到函數(shù)的圖象,只需將的圖象()
A.向左平移個(gè)單位長度B.向右平移個(gè)單位長度
C.向左平移個(gè)單位長度D.向右平移個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的值域?yàn)?(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若A,B是銳角三角形的兩個(gè)內(nèi)角,則點(diǎn)P在( )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是函數(shù)圖象的一部分.為了得到這個(gè)函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)
A.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變
B.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變
D.向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)遞減區(qū)間是____________.

查看答案和解析>>

同步練習(xí)冊答案