等差數(shù)列前m項(xiàng)和是30,前2m項(xiàng)和是100,則它的前3m項(xiàng)和是   
【答案】分析:根據(jù)等差數(shù)列中,依次的n項(xiàng)之和仍成等差數(shù)列.即Sm,S2m-Sm,S3m-S2m仍成等差數(shù)列.
解答:解:依題意,Sm,S2m-Sm,S3m-S2m成等差數(shù)列.
即30,70,S3m-100成等差數(shù)列.
∴30+S3m-100=2×70
∴Sm=210.
點(diǎn)評(píng):等差數(shù)列中,題中的性質(zhì)考查也是?純(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}中,a1=1,當(dāng)n∈N*,n≥2時(shí)滿足
an
an-1
=
an-1+2n-1
an-2n+1
,求
(1)求{an}的通項(xiàng)公式;
(2)記數(shù)列{
1
4an
}
的前n項(xiàng)和為An,證明An<2
n
;
(3)bn=
an(2n-1)
n2+cn
(c為非零常數(shù)),若數(shù)列{bn}是等差數(shù)列,其前n項(xiàng)和為Sn,求數(shù)列{(-1)nSn}的前m項(xiàng)和Tm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把形如M=mn(m,n∈N*)的正整數(shù)表示成各項(xiàng)都是整數(shù)、公差為2的等差數(shù)列前m項(xiàng)的和,稱作“對(duì)M的m項(xiàng)分劃”.例如,把9表示成9=32=1+3+5,稱作“對(duì)9的3項(xiàng)分劃”,把64表示成64=43=13+15+17+19,稱作“對(duì)64的4項(xiàng)分劃”.據(jù)此,對(duì)25的5項(xiàng)分劃中最大的數(shù)是
 
;625的5項(xiàng)分劃中第2項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是遞減的等差數(shù)列,{an}的前n項(xiàng)和是sn,且s6=s9,有以下四個(gè)結(jié)論:
(1)a8=0;(2)當(dāng)n等于7或8時(shí),sn取最大值;(3)存在正整數(shù)k,使sk=0;(4)存在正整數(shù)m,使sm=s2m
寫出以上所有正確結(jié)論的序號(hào),答:
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12;數(shù)列{bn}的前n項(xiàng)和是{Sn},且Sn+
1
2
bn=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{bn}是等比數(shù)列;
(3)記cn=
-2
an•log3
bn
2
,{cn}的前n項(xiàng)和為Tn,若Tn
m-2010
2
對(duì)一切n∈N*都成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,已知S3=9,S6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
(3)設(shè)數(shù)列{bn}的通項(xiàng)公式為bn=3n-2.集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構(gòu)成數(shù)列c1,c2,c3,…,求{cn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案