【題目】如圖,在四棱錐中,,,平面,點(diǎn)在棱上.
(Ⅰ)求證:平面平面;
(Ⅱ)若直線(xiàn)平面,求此時(shí)三棱錐的體積.
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).
【解析】
(I)先利用正弦定理以及三角形內(nèi)角和定理證明,結(jié)合可得平面,由此能證明平面平面;(II)連結(jié)與交于點(diǎn),連結(jié) ,可證明,由=,由此能求出三棱推的體積.
(Ⅰ)因?yàn)锳B⊥平面PAD,
所以AB⊥DP,
又因?yàn)?/span>,AP=2,∠PAD=60°,
由,可得,所以∠PDA=30°,
所以∠APD=90°,即DP⊥AP,
因?yàn)?/span>,所以DP⊥平面PAB,
因?yàn)?/span>,所以平面PAB⊥平面PCD
(Ⅱ)連結(jié)AC,與BD交于點(diǎn)N,連結(jié)MN,因?yàn)镻A//平面MBD,
MN為平面PAC與平面MBD的交線(xiàn),所以PA//MN,
所以,
在四邊形ABCD中,因?yàn)锳B//CD,所以,
所以,,.
因?yàn)锳B⊥平面PAD,所以AB⊥AD,且平面APD⊥平面ABCD,
在平面PAD中,作PO⊥AD,則PO⊥平面ABCD,
因?yàn)?/span>,
所以
因?yàn)镃D=3.所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)已知點(diǎn),直線(xiàn)與曲線(xiàn)交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線(xiàn)的四邊形的面積為.
(1)求橢圓E的方程;
(2)若直線(xiàn)與橢圓E相交于A,B兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假,因?yàn)?/span>“新冠”疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上學(xué)習(xí),為了研究學(xué)生網(wǎng)上學(xué)習(xí)的情況,某學(xué)校隨機(jī)抽取名學(xué)生對(duì)線(xiàn)上教學(xué)進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學(xué)生中男生有人對(duì)線(xiàn)上教學(xué)滿(mǎn)意,女生中有名表示對(duì)線(xiàn)上教學(xué)不滿(mǎn)意.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)線(xiàn)上教學(xué)是否滿(mǎn)意 與性別有關(guān)”;
態(tài)度 性別 | 滿(mǎn)意 | 不滿(mǎn)意 | 合計(jì) |
男生 | |||
女生 | |||
合計(jì) | 100 |
(2)從被調(diào)查的對(duì)線(xiàn)上教學(xué)滿(mǎn)意的學(xué)生中,利用分層抽樣抽取名學(xué)生,再在這名學(xué)生中抽取名學(xué)生,作線(xiàn)上學(xué)習(xí)的經(jīng)驗(yàn)介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量(,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷(xiāo)售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷(xiāo)售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤(rùn)為元.
(1)求商店日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.
①求這50天商店銷(xiāo)售該海鮮日利潤(rùn)的平均數(shù);
②估計(jì)日利潤(rùn)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校周五的課程表設(shè)計(jì)中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語(yǔ)文數(shù)學(xué)英語(yǔ)物理化學(xué)生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數(shù)學(xué)和英語(yǔ)在安排時(shí)必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).
A.4800種B.2400種C.1200種D.240種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上,點(diǎn)滿(mǎn)足以為直徑的圓過(guò)橢圓的上頂點(diǎn).
(1)求橢圓的方程;
(2)已知直線(xiàn)過(guò)右焦點(diǎn)與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得為定值?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com