【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.

【答案】(1)派甲參加比較合適(2)

【解析】試題分析:(1)根據(jù) 莖葉圖得到 ,故得兩人的平均成績相等,但甲的成績比較穩(wěn)定,派甲參加比較合適;2根據(jù)可得的取值可能為,由古典概型概率公式可得所求概率為。

試題解析:

(1)由莖葉圖可知甲、乙兩人成績的平均數(shù)為

,

,

,

,

∴兩人的平均成績相等,但甲的成績比較穩(wěn)定,派甲參加比較合適.

(2)由

,

,

為整數(shù),

,

的所有可能取值為0,1,2,3,4,5,6,7,8,9,

∴乙的平均分高于甲的平均分的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)的對稱軸方程;

(II)將函數(shù)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內(nèi)角A,B,C的對邊,a=2,c=4,且,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓: 上的任一點到焦點的距離最大值為3,離心率為 ,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若為曲線上兩點, 為坐標(biāo)原點,直線 的斜率分別為,,求直線被圓截得弦長的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量 (單位: )與它“相近”作物的株數(shù) 具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過 ),并分別記錄了相近作物的株數(shù)為 時,該作物的年收獲量的相關(guān)數(shù)據(jù)如下:

(1)求該作物的年收獲量 關(guān)于它“相近”作物的株數(shù)的線性回歸方程;

(2)農(nóng)科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每

個小正方形的面積為 ,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收

獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估

計分別為, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有800名學(xué)生,為了解學(xué)生3月月考生物測試情況,根據(jù)男女學(xué)生人數(shù)差異較大,從中隨機抽取了200名學(xué)生,記錄他們的分?jǐn)?shù),并整理得如圖頻率分布直方圖.

(1)若成績不低于60分的為及格,成績不低于80分的為優(yōu)秀,試估計總體中合格的有多少人?優(yōu)秀的有多少人?

(2)已知樣本中有一半的女生分?jǐn)?shù)不小于80,且樣本中不低于80分的男女生人數(shù)之比2:3,試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.

整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);

(Ⅱ)從對餐廳評分在范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在范圍內(nèi)的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,江的兩岸可近似地看出兩條平行的直線,江岸的一側(cè)有 兩個蔬菜基地,江岸的另一側(cè)點處有一個超市.已知、、中任意兩點間的距離為千米,超市欲在之間建一個運輸中轉(zhuǎn)站, , 兩處的蔬菜運抵處后,再統(tǒng)一經(jīng)過貨輪運抵處,由于, 兩處蔬菜的差異,這兩處的運輸費用也不同.如果從處出發(fā)的運輸費為每千米元.從處出發(fā)的運輸費為每千米元,貨輪的運輸費為每千米元.

(1)設(shè),試將運輸總費用(單位:元)表示為的函數(shù),并寫出自變量的取值范圍;

(2)問中轉(zhuǎn)站建在何處時,運輸總費用最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的一段圖象如下所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對邊分別為a,b,c且acosC,bcosB,ccosA成等差數(shù)列.
(1)求B的值;
(2)求2sin2A﹣1+cos(A﹣C)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案