下列函數(shù)中,在其定義域上為奇函數(shù)的是(  )
A、y=ex+e-x
B、y=-
x
C、y=tan|x|
D、y=ln
1+x
1-x
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用函數(shù)的奇偶性的定義判斷即可.
解答: 解:y=ex+e-x,滿足f(-x)=ex+e-x=f(x),函數(shù)是偶函數(shù).
y=-
x
定義域不關(guān)于原點(diǎn)對(duì)稱,不具有奇偶性;
y=tan|x|滿足f(-x)=tan|-x|=tan|x|=f(x),函數(shù)是偶函數(shù).
y=ln
1+x
1-x
,滿足f(-x)=ln
1-x
1+x
=-ln
1+x
1-x
=-f(x),函數(shù)是奇函數(shù).
故選:D.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,把雙曲線C1
x2
2
-y2=1繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到雙曲線C2,給出下列說法:
①C1與C2的離心率相同;②C1與C2的焦點(diǎn)坐標(biāo)相同;③C1與C2的漸近線方程相同;④C1與C2的實(shí)軸長相等.
其中正確的說法有( 。
A、①②B、②③C、①④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x2+6x=0},B={x2+3(a+1)x+a2-1=0},全集為R,且A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=loga(x+b)+2,(a>0且a≠1)的圖象恒過定點(diǎn)(3,2),則實(shí)數(shù)b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2sin5°-cos25°
sin25°
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)r(x)=ax2-(2a-1)x+b(a,b為常數(shù),a∈R,a≠0,b∈R)的一個(gè)零點(diǎn)是2-
1
a
.函數(shù)g(x)=lnx,設(shè)函數(shù)f(x)=r(x)-g(x).
(Ⅰ)求b的值,當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[
1
2
,1]上的最小值;
(Ⅲ)記函數(shù)y=f(x)圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.判斷曲線C在點(diǎn)N處的切線是否平行于直線AB?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x(1+x)2,x∈(-∞,0],
(1)求f(x)的極值點(diǎn);
(2)對(duì)任意的a<0,以F(a)記f(x)在[a,0]上的最小值,求k=
F(a)
a
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1的右焦點(diǎn)為F,點(diǎn)P為橢圓上一點(diǎn),且PF=6,點(diǎn)M為PF的中點(diǎn),則線段OM的長度為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=ax-3a+2(a∈R)必過定點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊答案