【題目】已知函數(shù) ,的值域是,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
【答案】B
【解析】分析:當(dāng)x≤2時(shí),檢驗(yàn)滿足f(x)≥4.當(dāng)x>2時(shí),分類討論a的范圍,依據(jù)函數(shù)的單調(diào)性,求得a的范圍,綜合可得結(jié)論.
詳解:由于函數(shù)f(x)=(a>0且a≠1)的值域是[4,+∞),
故當(dāng)x≤2時(shí),滿足f(x)=6﹣x≥4.
①若a>1,f(x)=3+logax在它的定義域上單調(diào)遞增,
當(dāng)x>2時(shí),由f(x)=3+logax≥4,∴l(xiāng)ogax≥1,∴l(xiāng)oga2≥1,∴1<a≤2.
②若0<a<1,f(x)=3+logax在它的定義域上單調(diào)遞減,
f(x)=3+logax<3+loga2<3,不滿足f(x)的值域是[4,+∞).
綜上可得,1<a≤2,
故答案為:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式:|2x﹣m|≤1的整數(shù)解有且僅有一個(gè)值為2.
(Ⅰ)求整數(shù)m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時(shí)間與每天獲得的利潤(rùn)(單位:萬(wàn)元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤(rùn) | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)估計(jì)星期日獲得的利潤(rùn)為多少萬(wàn)元.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2是橢圓 的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線段PF2的中點(diǎn),則 (其中e為橢圓C的離心率)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:函數(shù)和在公共定義域內(nèi),恒成立;
(3)若存在兩個(gè)不同的實(shí)數(shù),,滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車公司對(duì)最近6個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請(qǐng)求出關(guān)于的線性回歸方程,如果不能,請(qǐng)說(shuō)明理由;
(2)公司決定再采購(gòu)兩款車擴(kuò)大市場(chǎng), 兩款車各100輛的資料如表:
車型 | 報(bào)廢年限(年) | 合計(jì) | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車每年可為公司帶來(lái)收入元,不考慮采購(gòu)成本之外的其他成本,假設(shè)每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤(rùn)的平均數(shù)作為決策依據(jù),應(yīng)選擇采購(gòu)哪款車型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓與軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.
(1)若直線過(guò)點(diǎn)并且與圓相切,求直線的方程;
(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線分別與軸交于點(diǎn),點(diǎn)是線段的中點(diǎn),直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知點(diǎn),直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點(diǎn),且OA⊥OB.
(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長(zhǎng);
(2)若直線l過(guò)點(diǎn)(0,2),求l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com