(本題滿分16分)設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合.
(1)若,且,求和的值;
(2)若,且,記,求的最小值.
(1);(2)。
【解析】
試題分析:由……………………………1分
又
…………………3分 …………4分
……………………………5分
……………………………6分
(2) x=1
∴ , 即 ……………………………8分
∴, ∈[-2,2] , 其對(duì)稱軸方程為=
又≥1,故1-……………………………9分
∴M==9-2, m=
∴=M+m=9--1 ,…………………………11分
…………………15分
= ………16分
考點(diǎn):二次函數(shù)在閉區(qū)間的最值問(wèn)題。
點(diǎn)評(píng):影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開(kāi)口方向、對(duì)稱軸和區(qū)間的位置。我們常見(jiàn)的并且感到困難的主要是這兩類問(wèn)題:一是動(dòng)軸定區(qū)間,二是定軸動(dòng)區(qū)間。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省海門中學(xué)高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分16分)
設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,其中.是數(shù)列中滿足的任意項(xiàng).
(1)求證:;
(2)若也成等差數(shù)列,且,求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城中學(xué)高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分16分)
設(shè)是圓心在拋物線上的一系列圓,它們的圓心的橫坐標(biāo)分別記為,已知,又都與軸相切,且順次逐個(gè)相鄰?fù)馇? WWW.K**S*858$$U.COM
(1)求;
(2)求由構(gòu)成的數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省范集中學(xué)高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題滿分16分)
設(shè)數(shù)列滿足,令.
⑴試判斷數(shù)列是否為等差數(shù)列?并說(shuō)明理由;
⑵若,求前項(xiàng)的和;
⑶是否存在使得三數(shù)成等比數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省南通市高二期中聯(lián)考數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)設(shè)橢圓的左,右兩個(gè)焦點(diǎn)分別為,短軸的上端點(diǎn)為,短軸上的兩個(gè)三等分點(diǎn)為,且為正方形。
(1)求橢圓的離心率;
(2)若過(guò)點(diǎn)作此正方形的外接圓的切線在軸上的一個(gè)截距為,求此橢圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省淮安市淮陰區(qū)2009-2010學(xué)年度第二學(xué)期期末高一年級(jí)調(diào)查測(cè)試數(shù)學(xué)試題 題型:解答題
(本題滿分16分)
設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿足,問(wèn)是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com