【題目】設(shè)函數(shù),.

1)求的定義域;

(2)是否存在最大值或最小值?如果存在,請把它求出來;若不存在,請說明理由.

【答案】(1) ;(2)存在,時,既無最大值又無最小值;時,有最大值,但沒有最小值.

【解析】

1)根據(jù)的解析式中真數(shù)位置大于,得到關(guān)于的不等式組,解出答案,得到定義域;(2)對整理,分類討論內(nèi)層函數(shù)的單調(diào)性和最值,然后由復合函數(shù)的單調(diào)性得到的最值,得到答案.

1)因為函數(shù),.

所以,解得

,所以得

所以的定義域為.

2

設(shè)內(nèi)層函數(shù),

則外層函數(shù)為增函數(shù),

所以內(nèi)層函數(shù),

開口向下,軸為,

因為,所以,

所以,①當,即時,

,函數(shù)單調(diào)遞增,,函數(shù)單調(diào)遞減,

所以時,,無最小值,

時,,無最小值,

,即

函數(shù)上單調(diào)遞減,無最大值也無最小值,

無最大值也無最小值.

綜上所述,時,既無最大值又無最小值;時,有最大值,但沒有最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實數(shù);

(2)存在一個實數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】松江有軌電車項目正在如火如荼的進行中,通車后將給市民出行帶來便利,已知某條線路通車后,電車的發(fā)車時間間隔t(單位:分鐘)滿足,市場調(diào)研測試,電車載客量與發(fā)車時間間隔t相關(guān),當時電車為滿載狀態(tài),載客為400人,當時,載客量會少,少的人數(shù)與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客為272人,記電車載客為

1)求的表達式;

2)若該線路分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,且直線是曲線的一條切線,求實數(shù)的值;

(2)若不等式對任意恒成立,求的取值范圍;

(3)若函數(shù)有兩個極值點,,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)為常數(shù))滿足條件,且方程有兩個相等的實數(shù)根.

(1)求函數(shù)的解析式;

(2)是否存在實數(shù)使函數(shù)的定義域和值域分別為?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴峻形勢下,我省堅持保民生,保藍天,各地嚴格落實機動車限行等一系列“管控令”,某市交通管理部門為了了解市民對“單雙號限行”的態(tài)度,隨機采訪了200名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過的前提下認為“對限行的態(tài)度與是否擁有私家車有關(guān)”;

(2)為了了解限行之后是否對交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車分層抽樣抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人沒有私家車的概率.

附: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數(shù)不超過20人,每人需交費用800元;若旅行團人數(shù)超過20人,則給予優(yōu)惠:每多1人,人均費用減少10元,直到達到規(guī)定人數(shù)60人為止.旅行社需支付各種費用共計10000.

(1)寫出每人需交費用S關(guān)于旅行團人數(shù)的函數(shù);

(2)旅行團人數(shù)x為多少時,旅行社可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數(shù)據(jù)并按分數(shù)段進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖如圖.

(1)體育成績大于或等于70分的學生常被稱為“體育良好”.已知該校高一年級有1000名學生,試估計高一年級中“體育良好”的學生人數(shù);

(2)為分析學生平時的體育活動情況,現(xiàn)從體育成績在的樣本學生中隨機抽取2人,求在抽取的2名學生中,至少有1人體育成績在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

同步練習冊答案