【題目】如圖,已知四邊形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分別為BE,BP,PC的中點.
(1)求證:平面ABE⊥平面GHF;
(2)求直線GH與平面PBC所成的角θ的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)通過證明BC⊥平面ABE,FH∥BC,證得FH⊥平面ABE,即可證得面面垂直;
(2)建立空間直角坐標系,利用向量方法求線面角的正弦值.
(1)由題:,AE⊥平面ABCD,BC平面ABCD,所以AE⊥BC,
四邊形ABCD是正方形,AB⊥BC,AE與AB是平面ABE內兩條相交直線,
所以BC⊥平面ABE,F,H分別為BP,PC的中點,所以FH∥BC,
所以FH⊥平面ABE,HF平面GHF,所以平面ABE⊥平面GHF;
(2)由題可得:DA,DC,DP兩兩互相垂直,所以以D為原點,DA,DC,DP為x,y,z軸的正方向建立空間直角坐標系如圖所示:
,
所以,設平面PBC的法向量,
,取為平面PBC的一個法向量,
所以直線GH與平面PBC所成的角θ的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體中,是的中點,點是上一點,,,.動點在上底面上,且滿足三棱錐的體積等于1,則直線與所成角的正切值的最大值為( )
A.B.C.D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市旅游管理部門為提升該市26個旅游景點的服務質量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分,每項評分最低分0分,最高分100分,每個景點總分為這五項得分之和,根據(jù)考核評分結果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如下:
請根據(jù)圖中所提供的信息,完成下列問題:
(I)若從交通得分前6名的景點中任取2個,求其安全得分都大于90分的概率;
(II)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為,求隨機變量的分布列和數(shù)學期望;
(III)記該市26個景點的交通平均得分為安全平均得分為,寫出和的大小關系?(只寫出結果)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在空間直角坐標系中,已知正四棱錐P-ABCD的所有棱長均為6,正方形ABCD的中心為坐標原點O,AD,BC平行于x軸,AB、CD平行于y軸,頂點P在z軸的正半軸上,點M、N分別在PA,BD上,且.
(1)若,求直線MN與PC所成角的大小;
(2)若二面角A-PN-D的平面角的余弦值為,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內),連結PA,QF.若,的面積是面積的3倍.
(1)求橢圓C的標準方程;
(2)已知M為線段PA的中點,連結QA,QM.
①求證:Q,F,M三點共線;
②記直線QP,QM,QA的斜率分別為,,,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,以原點為圓心,短半軸長為半徑的圓恰好經(jīng)過橢圓的兩焦點,且該圓截直線所得的弦長為.
(1)求橢圓的標準方程;
(2)過定點的直線交橢圓于兩點、,橢圓上的點滿足,試求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國務院面對“突發(fā)災難”果斷采取措施,舉國上下,萬眾一心支援武漢,全國各地醫(yī)療隊陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導”活動,為抗疫前線醫(yī)務工作者子女開展在線輔導.春節(jié)期間隨機安排甲乙兩位志愿者為一位初中生輔導功課共3次,每位志愿者至少輔導1次,每一次只有1位志愿者輔導,到甲恰好輔導兩次的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的參數(shù)方程與直線的普通方程;
(2)設點過為曲線上的動點,點和點為直線上的點,且滿足為等邊三角形,求邊長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com