已知函數(shù)f(x)=sin(2x-),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,則a的值是(  )
A.B.C.D.
D
因?yàn)楹瘮?shù)滿足f(x+a)=f(x-a),所以函數(shù)是周期函數(shù),且周期為2a,又a∈(0,π),所以2a=,所以a=.
【方法技巧】周期函數(shù)的理解
(1)周期函數(shù)定義中的等式:f(x+T)=f(x)是定義域內(nèi)的恒等式,即對(duì)定義域內(nèi)的每個(gè)x值都成立,若只是存在個(gè)別x滿足等式的常數(shù)T不是周期.
(2)每個(gè)周期函數(shù)的定義域是一個(gè)無(wú)限集,其周期有無(wú)窮多個(gè),對(duì)于周期函數(shù)y=f(x),T是周期,則kT(k∈Z,k≠0)也是周期,但并非所有周期函數(shù)都有最小正周期.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且若向量與向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且函數(shù)圖像關(guān)于點(diǎn)對(duì)稱,則函數(shù)的解析式為_(kāi)_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)f(x)=Asin +1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)αf=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,它表示電流I=Asin(ωt+φ)(A>0,ω>0)在一個(gè)周期內(nèi)的圖象,則I=Asin(ωt+φ)的解析式為_(kāi)_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=msinx+cosx(x∈R)的圖象經(jīng)過(guò)點(diǎn)(,1).
(1)求f(x)的解析式,并求函數(shù)的最小正周期.
(2)若f(α+)=且α∈(0,),求f(2α-)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長(zhǎng)為2的等邊三角形,則f(1)的值為(  )
A.-B.-C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=3cos(x+φ)+2的圖象關(guān)于直線x=對(duì)稱,則|φ|的最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)f(x)=sin ωx+cos ωx(x∈R,ω>0)滿足f(α)=-2,f(β)=0,且|α-β|的最小值為,則函數(shù)f(x)的單調(diào)遞增區(qū)間為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案