已知函數(shù)f(x)=2cosx(sinx-cosx)+1,x∈R,則函數(shù)f(x)在區(qū)間[,]上的最大值和最小值分別為________.

 

-1

【解析】f(x)=2cosx(sinx-cosx)+1=sin2x-cos2x=sin(2x-),由≤x≤,得0≤2x-,即-≤sin(2x-)≤1,-1≤f(x)≤,故f(x)的最大值為,最小值為-1.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:選擇題

已知△ABC的頂點(diǎn)分別為A(2,1),B(3,2),C(-3,-1),BC邊上的高為AD,則點(diǎn)D的坐標(biāo)為(  )

A.(-,) B.(,-)

C.(,) D.(-,-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:填空題

在△ABC中,設(shè)角A、B、C的對(duì)邊分別為a、b、c,若a=(cosC,2a-c),b=(b,-cosB)且a⊥b,則B=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-6簡(jiǎn)單的三角恒等變換(解析版) 題型:選擇題

已知cos(α-)+sinα=,則sin(α+)的值是(  )

A.- B. C.- D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:選擇題

已知α,β∈(0,),滿足tan(α+β)=4tanβ,則tanα的最大值是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:選擇題

已知cosα=,cos(α+β)=-,α,β都是銳角,則cosβ=(  )

A.- B.- C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-4正弦型函數(shù)的圖象及應(yīng)用(解析版) 題型:解答題

已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-<φ<0)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).

(1)求函數(shù)f(x)的解析式;

(2)若銳角θ滿足cosθ=,求f(2θ)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-3三角函數(shù)的圖象與性質(zhì)(解析版) 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)+1(ω>0,A>0,0<φ<)的周期為π,f()=+1,且f(x)的最大值為3.

(1)寫出f(x)的表達(dá)式;

(2)寫出函數(shù)f(x)的對(duì)稱中心,對(duì)稱軸方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-7函數(shù)的圖象(解析版) 題型:填空題

給出定義:若m-<x≤m+(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)命題:①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)閇0,];②函數(shù)y=f(x)在[-,]上是增函數(shù);③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;④函數(shù)y=f(x)的圖象關(guān)于直線x= (k∈Z)對(duì)稱.其中正確命題的序號(hào)是________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案