(本小題14分)某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如左圖, B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如右圖 (注:利潤(rùn)與投資單位:萬(wàn)元).

 

 

(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資(萬(wàn)元)的函數(shù)關(guān)系式;

(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元?

 

【答案】

解(1)設(shè)投資為x萬(wàn)元,A產(chǎn)品的利潤(rùn)為f(x)萬(wàn)元,B產(chǎn)品的利潤(rùn)為g(x)萬(wàn)元

由題設(shè)

由圖知f(1)=,故k1=    

          

從而   .。。。。。。。。。。。。。。。。。。。6

(2)設(shè)A產(chǎn)品投入x萬(wàn)元,則B產(chǎn)品投入10-x萬(wàn)元,設(shè)企業(yè)利潤(rùn)為y萬(wàn)元

       

 

當(dāng)

答:當(dāng)A產(chǎn)品投入3.75萬(wàn)元,則B產(chǎn)品投入6.25萬(wàn)元,企業(yè)最大利潤(rùn)為萬(wàn)元.。。。。。。。14

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高二第一次階段考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷(xiāo)售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,通過(guò)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:

 

 

資  金

單位產(chǎn)品所需資金(百元)

月資金供應(yīng)量(百元)

空調(diào)機(jī)

洗衣機(jī)

成  本

30

20

300

勞動(dòng)力(工資)

5

10

110

單位利潤(rùn)

6

8

 

試問(wèn):怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤(rùn)達(dá)到最大,最大利潤(rùn)是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市高三復(fù)習(xí)必修五綜合練習(xí) 題型:解答題

(本小題14分)某工廠要制造A種電子裝置41臺(tái),B種電子裝置66臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2㎡,可做A、B的外殼分別為2個(gè)和7個(gè),乙種薄鋼板每張面積5㎡,可做A、B的外殼分別為7個(gè)和9個(gè),求兩種薄鋼板各用多少?gòu),才能使總的用料面積最?

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州蕭山三校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題14分)

某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.

(1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求;

(2)現(xiàn)有兩個(gè)獎(jiǎng)勵(lì)函數(shù)模型:(1)y=;(2)y=4lgx-3.試分析這兩個(gè)函數(shù)模型是否符合公司要求?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題14分)

某租賃公司擁有汽車(chē)100輛.當(dāng)每輛車(chē)的月租金為3 000元時(shí), 可全部租

出.當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛.租出的車(chē)每月

需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.

(1)當(dāng)每輛車(chē)的月租金定為3 600元時(shí),能租出多少輛車(chē)?

(2)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?

最大月收益是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案