【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)的參數(shù)方程為:為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為:,直線(xiàn)與曲線(xiàn)交于A,B兩點(diǎn),

求曲線(xiàn)的普通方程及的最小值;

若點(diǎn),求的最大值.

【答案】(1)曲線(xiàn)的普通方程為的最小值為.(2)最大值70

【解析】

由曲線(xiàn)的極坐標(biāo)方程,能求出曲線(xiàn)的普通方程最小時(shí),圓心距最大為,能求出的最小值;將直線(xiàn)方程聯(lián)立方程,得,從而,,進(jìn)而,由此能求出的最大值.

曲線(xiàn)的極坐標(biāo)方程為:,

,

曲線(xiàn)的普通方程為,即

直線(xiàn)的參數(shù)方程為:為參數(shù),

直線(xiàn)與曲線(xiàn)交于A,B兩點(diǎn),

最小時(shí),圓心距最大為,

的最小值為:

設(shè)直線(xiàn)上點(diǎn)A,B對(duì)應(yīng)參數(shù)方程為參數(shù)的參數(shù)分別為,

將直線(xiàn)方程聯(lián)立方程,得:

,,

,,

,

當(dāng)時(shí),取最大值70.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

若曲線(xiàn)處的切線(xiàn)在兩坐標(biāo)軸上的截距相等,求的值;

若對(duì),都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線(xiàn)C的直角坐標(biāo)方程;

(Ⅱ)若直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線(xiàn)l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C的焦點(diǎn)坐標(biāo)為,點(diǎn),過(guò)點(diǎn)P作直線(xiàn)l交拋物線(xiàn)CA,B兩點(diǎn),過(guò)A,B分別作拋物線(xiàn)C的切線(xiàn),兩切線(xiàn)交于點(diǎn)Q,則面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車(chē)被稱(chēng)為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn)某共享單車(chē)運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

月份代碼x

1

2

3

4

5

6

市場(chǎng)占有率

11

13

16

15

20

21

請(qǐng)?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說(shuō)明可用線(xiàn)性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系;

y關(guān)于x的線(xiàn)性回歸方程,并預(yù)測(cè)該公司2018年2月份的市場(chǎng)占有率;

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車(chē)擴(kuò)大市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000元輛和800元輛的A,B兩款車(chē)型報(bào)廢年限各不相同考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:

報(bào)廢年限

車(chē)型

1年

2年

3年

4年

總計(jì)

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車(chē)每年可以為公司帶來(lái)收入500元不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車(chē)使用壽命的概率,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù)如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車(chē)型?

參考數(shù)據(jù):,,

參考公式:相關(guān)系數(shù),

回歸直線(xiàn)方程為其中:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)名不同性別的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

愛(ài)好

40

20

不愛(ài)好

20

30

算得,

參照附表,以下不正確的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

B.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

C.以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)

D.以上的把握認(rèn)為愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為4的正三角形,,底面,點(diǎn)分別為,的中點(diǎn).

(1)求證:平面平面;

(2)在線(xiàn)段上是否存在點(diǎn),使得直線(xiàn)與平面所成的角的正弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若方程fx)﹣m=0恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,軸,直線(xiàn)軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線(xiàn)與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線(xiàn)的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案