【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若存在,使得(是自然對(duì)數(shù)的底數(shù)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列4個(gè)命題:
(1)有兩個(gè)面互相平行,其余四個(gè)面都是全等的等腰梯形的六面體是正四棱臺(tái);
(2)底面是正三角形,其余各面都是等腰三角形的棱錐是正三棱錐;
(3)各側(cè)面都是等腰三角形的四棱錐是正四棱錐;
(4)底面是正三角形,相鄰兩側(cè)而所成的二面角都相等的三棱錐是正三棱錐
中,假命題的個(gè)數(shù)為( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條互相垂直的弦分別與橢圓交于點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓C:的左右焦點(diǎn)分別為,,直線l:與橢圓C交于A,B兩點(diǎn)為坐標(biāo)原點(diǎn).
若直線l過(guò)點(diǎn),且十,求直線l的方程;
若以AB為直徑的圓過(guò)點(diǎn)O,點(diǎn)P是線段AB上的點(diǎn),滿(mǎn)足,求點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的四棱錐中,底面為菱形,,為正三角形.
(1)證明:;
(2)若,四棱錐的體積為16,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,|PQ|=|PA|成立,如圖.
(1)求a,b間的關(guān)系;
(2)求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法:
①將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;
②設(shè)有一個(gè)回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位
③線性回歸方程必過(guò)
④設(shè)具有相關(guān)關(guān)系的兩個(gè)變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;
⑤在一個(gè)列聯(lián)表中,由計(jì)算得的值,那么的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大。
其中錯(cuò)誤的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com