在數(shù)列{an}在中,,a1+a2+…an=an2+bn,n∈N*,其中a,b為常數(shù),則的值是   
【答案】分析:,可知.從而得到a=2,,由此可知
解答:解:∵
,從而
∴a=2,,則
答案:1.
點(diǎn)評(píng):本題考查數(shù)列的極限問(wèn)題,解題時(shí)要認(rèn)真審題,仔細(xì)計(jì)算,避免出現(xiàn)不必要的錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

23、在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年福建省廈門(mén)第一中學(xué)高二(下)期中數(shù)學(xué)試卷(選修2-2)(解析版) 題型:解答題

在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時(shí),數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時(shí),試比較an與n2+1的大小,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案