(本小題滿(mǎn)分12分)已知數(shù)列的前n項(xiàng)和,且與1的等差中項(xiàng)。
(1)求數(shù)列和數(shù)列的通項(xiàng)公式;
(2)若,求
(3)若,是否存在,使得并說(shuō)明理由。
(1)(2)(3)當(dāng)n為奇數(shù)時(shí),由已知得2n+19=2n-2,矛盾。當(dāng)n為偶數(shù)時(shí),由已知得n+10=4n-6,矛盾。
所以滿(mǎn)足條件的n不存在。

試題分析:(1)時(shí),,時(shí),,綜上與1的等差中項(xiàng)
(2)

(3)
當(dāng)n為奇數(shù)時(shí),由已知得2n+19=2n-2,n無(wú)解
當(dāng)n為偶數(shù)時(shí),由已知得n+10=4n-6,
所以滿(mǎn)足條件的n不存在
點(diǎn)評(píng):由數(shù)列的求通項(xiàng)時(shí)需分兩種情況討論,,第二問(wèn)一般數(shù)列求和采用的是裂項(xiàng)相消的方法,適用于通項(xiàng)為形式的數(shù)列
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列{an}滿(mǎn)足=p(p為正常數(shù),n∈N+),則稱(chēng){an}為“等方比數(shù)列”.
甲:數(shù)列{an}是等方比數(shù)列;乙:數(shù)列{an}是等比數(shù)列,則甲是乙的      條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”選擇一個(gè)填入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

現(xiàn)有一根n節(jié)的竹竿,自上而下每節(jié)的長(zhǎng)度依次構(gòu)成等差數(shù)列,最上面一節(jié)長(zhǎng)為   10cm,最下面的三節(jié)長(zhǎng)度之和為114cm,第6節(jié)的長(zhǎng)度是首節(jié)與末節(jié)長(zhǎng)度的等比中項(xiàng),則n=          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{}的前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分13分)
設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列,,且依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和
(Ⅲ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列項(xiàng)和滿(mǎn)足,等差數(shù)列滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),數(shù)列的前項(xiàng)和為,問(wèn)的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)
已知數(shù)列是遞增數(shù)列,且滿(mǎn)足
(1)若是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)對(duì)于(1)中,令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)設(shè)數(shù)列的前項(xiàng)和為,已知 (為常數(shù),),且成等差數(shù)列.
(1) 求的值;  
(2) 求數(shù)列的通項(xiàng)公式;
(3) 若數(shù)列 是首項(xiàng)為1,公比為的等比數(shù)列,記

.求證: ,().

查看答案和解析>>

同步練習(xí)冊(cè)答案