已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)的距離為
(I)求p與m的值;
(II)設(shè)拋物線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過(guò)P的直線交C于另一點(diǎn)Q,交x軸于點(diǎn)M,過(guò)點(diǎn)M作拋物線的切線MN,N(非原點(diǎn))為切點(diǎn),以MN為直徑作圓A,若圓A恰好經(jīng)過(guò)點(diǎn)Q,求t的最小值.

【答案】分析:(Ⅰ)由拋物線方程得其準(zhǔn)線方程:,根據(jù)拋物線定義能求出p與m的值.
(Ⅱ)設(shè)直線,當(dāng)y=0,x=,則M(),聯(lián)立方程,得:x2-kx+t(k-t)=0,由此入手能夠求出t的最小值.
解答:(本題滿分15分)
解:(Ⅰ)由拋物線方程得其準(zhǔn)線方程:,根據(jù)拋物線定義
點(diǎn)A(m,4)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離,即,解得
∴拋物線方程為:x2=y,將A(m,4)代入拋物線方程,解得m=±2…(4分)
(Ⅱ)由題意知,過(guò)點(diǎn)P(t,t2)的直線PQ斜率存在且不為0,設(shè)其為k.

當(dāng)y=0,x=,則M(),…(6分)
聯(lián)立方程,整理得:x2-kx+t(k-t)=0,
即:(x-t)[x-(k-t)]=0,解得x=t,或x=k-t,
∴Q(k-t,(k-t)2),…(8分)
而以MN為直徑的圓A恰好經(jīng)過(guò)點(diǎn)Q,
∴QN⊥QP,∴直線NQ斜率為-,
,…(10分)
聯(lián)立方程
整理得:,
即:kx2+x-(k-t)[k(k-t)+1]=0,
[kx+k(k-t)+1][x-(k-t)]=0,
解得:x=-,或x=k-t,
∴N(-),…(12分)
=,
而拋物線在點(diǎn)N處切線斜率:k==,
∵M(jìn)N是拋物線的切線,∴=,…(14分)
整理得k2+tk+1-2t2=0,
∵△=t2-4(1-2t2)≥0,
解得t≤-(舍去),或t≥,
∴tmin=.…(15分)
點(diǎn)評(píng):本題考查拋物線的性質(zhì)和應(yīng)用,具體涉及到拋物線和直線的位置關(guān)系的應(yīng)用,拋物線的簡(jiǎn)單性質(zhì),圓的簡(jiǎn)單性質(zhì),直線方程等基本知識(shí)點(diǎn),解題時(shí)要認(rèn)真審題,仔細(xì)解答,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py(p>0),其焦點(diǎn)F到準(zhǔn)線的距離為
12

(1)試求拋物線C的方程;
(2)設(shè)拋物線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過(guò)P的直線交C于另一點(diǎn)Q,交x軸于M,過(guò)點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=
12
y
和定點(diǎn)P(1,2),A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),且直線PA和PB的斜率為非零的互為相反數(shù).
(I)求證:直線AB的斜率是定值;
(II)若拋物線C在A、B兩點(diǎn)處的切線相交于點(diǎn)M,求M的軌跡方程;
(III)若A′與A關(guān)于y軸成軸對(duì)稱,求直線A′B與y軸交點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py,過(guò)點(diǎn)A(0,4)的直線l交拋物線C于M,N兩點(diǎn),且OM⊥ON.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)N作y軸的平行線與直線y=-4相交于點(diǎn)Q,若△MNQ是等腰三角形,求直線MN的方程.K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=ay(a>0),斜率為k的直線l經(jīng)過(guò)拋物線的焦點(diǎn)F,交拋物線于A,B兩點(diǎn),且拋物線上一點(diǎn)M(2
2
 , m) (m>1)
到點(diǎn)F的距離是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)過(guò)A,B兩點(diǎn)分別作拋物線的切線,這兩條切線的交點(diǎn)為點(diǎn)Q,求證:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒(méi)有公共點(diǎn)(其中m為常數(shù)).動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過(guò)P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過(guò)點(diǎn)Q(1,1).
(1)求拋物線C的方程;
(2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案